For decades, simulation technique has been well validated in areas such as computer and communication systems. Recently, the technique has been much used in the area of transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and diversities of driver characteristics have never been considered sufficiently in these methods, although they are considered important factors in traffic flow analysis. In this paper, we propose a traffic simulation tool called Multi-Agent for Traffic Simulation with Vehicle Dynamics Model (MATDYMO). Road transport consultants, traffic engineers and urban traffic control center managers are expected to use MATDYMO to efficiently simulate traffic flow. MATDYMO has four sub systems: the road management system, the vehicle motion control system, the driver management system, and the integration control system. The road management system simulates traffic flow for various traffic environments (e.g., multi-lane roads, nodes, virtual lanes, and signals); the vehicle motion control system constructs the vehicle agent by using various vehicle dynamic models; the driver management system constructs the driver agent capable of having different driving styles; and lastly, the integrated control system regulates the MATDYMO as a whole and observes the agents running in the system. The vehicle motion control system and driver management system are described in the companion paper. An interrupted and uninterrupted flow model were simulated, and the simulation results were verified by comparing them with the results from a commercial software, TRANSYT-7F. The simulation result of the uninterrupted flow model showed that the driver agent displayed human-like behavior ranging from slow and careful driving to fast and aggressive driving. The simulation of the interrupted flow model was implemented as two cases. The first case analyzed traffic flow as the traffic signals changed at different intervals and as the turning traffic volume changed. Second case analyzed the traffic flow as the traffic signals changed at different intervals and as the road length changed. The simulation results of the interrupted flow model showed that the close relationship between traffic state change and traffic signal interval.
PURPOSES: Used in transportation planning and traffic engineering, almost traffic simulation tools have input variable values optimized by overseas traffic flow attribution because they are almost developed in overseas country. Thus, model calibration appropriated for internal traffic flow attribution is needed to improve reliability of simulation method. METHODS : In this study, the traffic flow model calibration is based on expressways. For model calibration, it needs to define each expressway link according to attribution, thus it is classified by design speed, geometric conditions and number of lanes. And modified greenshield model is used as traffic flow model. RESULTS : The result of the traffic model calibration indicates that internal congested density is lower than overseas. And the result of analysis according to the link attribution indicates that the more design speed and number of lanes increase, the lower the minimum speed, the higher the congested density. CONCLUSIONS: In the traffic simulation tool developed in overseas, the traffic flow is different as design speed and number of lanes, but road segment don't affect traffic flow. Therefore, these results need to apply reasonably to internal traffic simulation method.
Motivated by the traffic flow model with Arrhenius looka-head relaxation dynamics introduced in [25], this paper proposes a traffic flow model with look ahead relaxation-behind intensification by inserting look behind intensification dynamics to the flux. Finite time shock formation conditions in the proposed model with various types of interaction potentials are identified. Several numerical experiments are performed in order to demonstrate the performance of the modified model. It is observed that, comparing to other well-known macroscopic traffic flow models, the model equipped with look ahead relaxation-behind intensification has both enhanced dispersive and smoothing effects.
International journal of advanced smart convergence
/
제12권4호
/
pp.88-97
/
2023
Traffic flow prediction is of great significance in urban planning and traffic management. As the complexity of urban traffic increases, existing prediction methods still face challenges, especially for the fusion of spatiotemporal information and the capture of long-term dependencies. This study aims to use the fusion model of graph neural network to solve the spatio-temporal information fusion problem in traffic flow prediction. We propose a new deep learning model Spatio-Temporal Information Fusion using Graph Neural Networks (STFGNN). We use GCN module, TCN module and LSTM module alternately to carry out spatiotemporal information fusion. GCN and multi-core TCN capture the temporal and spatial dependencies of traffic flow respectively, and LSTM connects multiple fusion modules to carry out spatiotemporal information fusion. In the experimental evaluation of real traffic flow data, STFGNN showed better performance than other models.
In this paper, we investigate a traffic flow modeled by stochastic Petri nets. The model consists of two parts : the traffic flow model and signal controller model. These models are used for analyzing the flow of the traffic intersection. The results of the evaluation are derived from a Petri Net-based simulation package, Greatspn. Through simulation we compare the performances of the pretimed signal controller with those of the trafic-adaptive signal controller.
Journal of information and communication convergence engineering
/
제5권2호
/
pp.171-176
/
2007
To give a guarantee a consistently high level of quality and reliability of Telematics traffic service, traffic flow forecasting is very important issue. In this paper, we proposed an adaptable integrated prediction model to predict the traffic flow in the future. Our model combines two methods, short-term prediction model and long-term prediction model with different combining coefficients to reflect current traffic condition. Short-term model uses the Kalman filtering technique to predict the future traffic conditions. And long-term model processes accumulated speed patterns which means the analysis results for all past speeds of each road by classifying the same day and the same time interval. Combining two models makes it possible to predict future traffic flow with higher accuracy over a longer time range. Many experiments showed our algorithm gives a better precise prediction than only an accumulated speed pattern that is used commonly. The result can be applied to the car navigation to support a dynamic shortest path. In addition, it can give users the travel information to avoid the traffic congestion areas.
In the companion paper, the composition and structure of the MATDYMO (Multi-Agent for Traffic Simulation with Vehicle Dynamic Model) were proposed. MATDYMO consists of the road management system, the vehicle motion control system, the driver management system, and the integration control system. Among these systems, the road management system and the integration control system were discussed In the companion paper. In this paper, the vehicle motion control system and the driver management system are discussed. The driver management system constructs the driver agent capable of having different driving styles ranging from slow and careful driving to fast and aggressive driving through the yielding index and passing index. According to these indices, the agents pass or yield their lane for other vehicles; the driver management system constructs the vehicle agents capable of representing the physical vehicle itself. A vehicle agent shows its behavior according to its dynamic characteristics. The vehicle agent contains the nonlinear subcomponents of engine, torque converter, automatic transmission, and wheels. The simulation is conducted for an interrupted flow model and its results are verified by comparison with the results from a commercial software, TRANSYT-7F. The interrupted flow model simulation is implemented for three cases. The first case analyzes the agents' behaviors in the interrupted flow model and it confirms that the agent's behavior could characterize the diversity of human behavior and vehicle well through every rule and communication frameworks. The second case analyzes the traffic signals changed at different intervals and as the acceleration rate changed. The third case analyzes the effects of the traffic signals and traffic volume. The results of these analyses showed that the change of the traffic state was closely related with the vehicle acceleration rate, traffic volume, and the traffic signal interval between intersections. These simulations confirmed that MATDYMO can represent the real traffic condition of the interrupted flow model. At the current stage of development, MATDYMO shows great promise and has significant implications on future traffic state forecasting research.
When a slow-moving vehicle occupies one of the lanes of a multi-lane highway, it often causes queuing behind, unlike one is caused by an actual stoppage on that lane. This happens when the traffic flow rate upstream from the slow vehicle exceeds a certain critical value. This phenomena is called as the Moving Bottleneck, defined by Gazis and Herman (1992), Newell (1998) [3], and Munoz and Daganzo (2002), who conducted the flow estimates of upstream and downstream and considered slow-moving vehicle speed and the flow ratio exceeding slow vehicle and the microscopic traffic flow characteristics of moving bottleneck. But, a study of delay on moving bottleneck was not conducted until now. So this study provides a average delay time model related to upstream flow and the speed of slow vehicle. We have chosen the two-lane highway and homogeneous traffic flow. A slow-moving vehicle occupies one of the two lanes. Average delay time value is a result of AIMSUN[9], the microscopic traffic flow simulator. We developed a multiple regression model based on that value. Average delay time has a high value when the speed of slow vehicle is decreased and traffic flow is increased. Conclusively, the model is formulated by the negative exponential function.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권1호
/
pp.216-238
/
2023
In intelligent transportation systems, traffic management is an important task. The accurate forecasting of traffic characteristics like flow, congestion, and density is still active research because of the non-linear nature and uncertainty of the spatiotemporal data. Inclement weather, such as rain and snow, and other special events such as holidays, accidents, and road closures have a significant impact on driving and the average speed of vehicles on the road, which lowers traffic capacity and causes congestion in a widespread manner. This work designs a model for multivariate short-term traffic congestion prediction using SLSTM_AE-BiLSTM. The proposed design consists of a Bidirectional Long Short Term Memory(BiLSTM) network to predict traffic flow value and a Convolutional Neural network (CNN) model for detecting the congestion status. This model uses spatial static temporal dynamic data. The stacked Long Short Term Memory Autoencoder (SLSTM AE) is used to encode the weather features into a reduced and more informative feature space. BiLSTM model is used to capture the features from the past and present traffic data simultaneously and also to identify the long-term dependencies. It uses the traffic data and encoded weather data to perform the traffic flow prediction. The CNN model is used to predict the recurring congestion status based on the predicted traffic flow value at a particular urban traffic network. In this work, a publicly available Caltrans PEMS dataset with traffic parameters is used. The proposed model generates the congestion prediction with an accuracy rate of 92.74% which is slightly better when compared with other deep learning models for congestion prediction.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권10호
/
pp.4887-4907
/
2017
Accurate traffic flow forecasting is critical to the development and implementation of city intelligent transportation systems. Therefore, it is one of the most important components in the research of urban traffic scheduling. However, traffic flow forecasting involves a rather complex nonlinear data pattern, particularly during workday peak periods, and a lot of research has shown that traffic flow data reveals a seasonal trend. This paper proposes a new traffic flow forecasting model that combines seasonal relevance vector regression with the hybrid chaotic simulated annealing method (SRVRCSA). Additionally, a numerical example of traffic flow data from The Transportation Data Research Laboratory is used to elucidate the forecasting performance of the proposed SRVRCSA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the seasonal auto regressive integrated moving average (SARIMA), the double seasonal Holt-Winters exponential smoothing (DSHWES), and the relevance vector regression with hybrid Chaotic Simulated Annealing method (RVRCSA) models. The forecasting performance of RVRCSA with different kernel functions is also studied.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.