• Title/Summary/Keyword: traffic engineering

Search Result 5,477, Processing Time 0.03 seconds

A Study on Trip Generation Model considering Trip-chaining by Behavioral Homogeneous Person Group ("유사 통행행태 집단"의 Trip-chaining을 고려한 통행발생 모형)

  • Lee, Seon-Ha;Yun, Jin-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.709-716
    • /
    • 2006
  • The rapid changes of family structure such as singles, working couples and so on have effects on a travel behaviour. One of the characteristics from this is the increasing portion of trip-chain, in which plural activities were conducted in a "single outgoing" travel. Therefore travel must be considered as location change to conduct various activities instead of pursuing single travel purpose. This paper specifies a behavioral homogeneous person group by a job, a possession of cars. Based on this classification of person groups and their activity diary, the sequence, time and travel mode of activities in a day can be verified. As a case study household survey was conducted in city Kongju. The survey result shows that the classification of behavioral homogeneous person group based on criteria like employment status and car ownership bring a good result to forecast trip generation in traffic zone.

A Study on the Economical Analysis Model for Asphalt Pavementin Congestion Area of Metropolitan (대도시 혼잡구간의 아스팔트 포장에 대한 경제성 분석 모델 연구)

  • Jo, Byung Wan;Tae, Ghi Ho;Kim, Do Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.771-781
    • /
    • 2006
  • This Study is about the development of LCC Analysis Model and Evaluation of VE. It was carried out to help the person's intention decision about choosing the pavement construction method that can deal with 'Pavement Life Factor' like Area Character and Traffic Volume efficiently, by considering the total life cycle cost of pavement life cycle happens according to the numbers of public use year. For this, we developed the new LCC Analysis Model by using the Data of Seoul city the representative city in Korea, and carried out VE Evaluation that reflects the opinions of specialists. This Analysis Model consists of cost items that affects directly the choice of pavement construction, except for the common cost items of the various pavement construction. And we investigated the propriety by applying our model to the example line that are used for the public at present. About the base data of cost items that are used for our analysis, we enhanced our model's confidence by using the statistics data of Seoul and the standard data of unit cost calculation.

Lifetime Reliability Based Life-Cycle Cost-Effective Optimum Design of Steel Bridges (생애 신뢰성에 기초한 강교의 LCC최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, CheolJun;Kim, Seong Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.75-89
    • /
    • 2006
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology of steel bridges considering time effect of bridge reliability under environmental stressors such as corrosion and heavy truck traffics. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure which depends upon the prior and updated load and resistance histories should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model considering corrosion initiation, corrosion rate, and repainting effect are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40 m+50 m+40 m=130 m), and various sensitivity analyses of types of steel, local corrosion environments, average daily traffic volume, and discount rates are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the number of truck traffics significantly influence the LCC-effective optimum design of steel bridges, and thus realized that these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Driver Route Choice Models for Developing Real-Time VMS Operation Strategies (VMS 실시간 운영전략 구축을 위한 운전자 경로선택모형)

  • Kim, SukHee;Choi, Keechoo;Yu, JeongWhon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.409-416
    • /
    • 2006
  • Real-time traveler information disseminated through Variable Message Signs (VMS) is known to have effects on driver route choice decisions. In the past, many studies have attempted to optimize the system performance using VMS message content as the primary control variable of driver route choice. This research proposes a VMS information provision optimization model which searches the best combination of VMS message contents and display sequence to minimize the total travel time on a highway network considered. The driver route choice models under VMS information provision are developed using a stated preference (SP) survey data in order to realistically capture driver response behavior. The genetic algorithm (GA) is used to find the optimal VMS information provision strategies which consists of the VMS message contents and the sequence of message display. In the process of the GA module, the system performance is measured using micro traffic simulation. The experiment results highlight the capability of the proposed model to search the optimal solution in an efficient way. The results show that the traveler information conveyed via VMS can reduce the total travel time on a highway network. They also suggest that as the frequency of VMS message update gets shorter, a smaller number of VMS message contents performs better to reduce the total travel time, all other things being equal.

Ship Collision Risk of Suspension Bridge and Design Vessel Load (현수교의 선박충돌 위험 및 설계박하중)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.11-19
    • /
    • 2006
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of suspension bridge. Method II in AASHTO LRFD bridge design specifications which is a more complicated probability based analysis procedure is used to select the design vessel for collision impact. From the assessment of ship collision risk for each bridge pier exposed to ship collision, the design impact lateral strength of bridge pier is determined. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed annual frequency of collapse(AF) is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. This AF allocation method is compared to the pylon concentration allocation method to obtain safety and economy in results. This method seems to be more reasonable than the pylon concentration allocation method because AF allocation by weights takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified. The design vessel for each pier corresponding with the design impact lateral strength obtained from the ship collision risk assessment is then selected. The design impact lateral strength can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. Therefore more researches on the allocation model of AF and the selection of design vessel are required.

Ship Collision Risk Assessment for Bridges (교량의 선박충돌위험도 평가)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.1-9
    • /
    • 2006
  • An analysis of the annual frequency of collapse(AF) is performed for each bridge pier exposed to ship collision. From this analysis, the impact lateral resistance can be determined for each pier. The bridge pier impact resistance is selected using a probability-based analysis procedure in which the predicted annual frequency of bridge collapse, AF, from the ship collision risk assessment is compared to an acceptance criterion. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed AF is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The distribution of the AF acceptance criterion among the exposed piers is generally based on the designer's judgment. In this study, the acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. To determine the design impact lateral resistance of bridge components such pylon and pier, the numerical analysis is performed iteratively with the analysis variable of impact resistance ratio of pylon to pier. The design impact lateral resistance can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. More researches on the allocation model of AF and the determination of impact resistance are required.

Field Evaluation of Traffic Wandering Effect on Asphalt Pavement Responses (차량의 횡방향 주행이격에 의한 아스팔트 콘크리트 포장의 응답특성 분석)

  • Seo, Youngguk;Kwon, Soon-Min;Lee, Jae-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.453-459
    • /
    • 2006
  • This paper presents an experimental evaluation of wandering effect on asphalt concrete pavement responses. A laser-based wandering system has been developed and its performance is verified under various field conditions. The portable wandering system composed of two laser sensors with Position Sensitive Devices can allow one to measure the distance between laser sensors and tire edges of moving vehicle. Therefore, lateral position of each wheel on the pavement can be determined in a real time manner. Pavement responses due to different loading paths are investigated using a roll over test which is carried out on one of asphalt surfaced pavements in the Korea Highway Corporation test road. The pavement section (A5) consists of 5 cm thick surface course; 7 cm intermediate course; and 18 mm base course, and is heavily instrumented with strain gauges, vertical soil pressure cells and thermo-couples. From the center of wheel paths, seven equally-spaced lateral loading paths are carefully selected over an 140 cm wandering zone. Test results show that lateral horizontal strains in both surface and intermediate courses are mostly compressive right under the loading path and tensile strains start to develop as the loading offset becomes 40 cm from the wheel path. The development of the vertical stresses in the top layers of subbase and anti-frost is found to be minimal once the loading offset becomes 50 cm.

Life-Cycle Cost Effective Optimal Seismic Retrofit and Maintenance Strategy of Bridge Structures - (II) Methodology for Life-Cycle Cost Analysis (교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 - (II) 생애주기비용해석 방법론)

  • Lee, Kwang-Min;Cho, Hyo-Nam;Chung, Jee-Seung;An, Hyoung-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.977-988
    • /
    • 2006
  • The goal of this study is to develop a realistic methodology for determination of the Life-Cycle Cost (LCC)-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges. The proposed methodology is based on the concept of minimum LCC which is expressed as the sum of present value of seismic retrofit costs, expected maintenance costs, and expected economic losses with the constraints such as design requirements and acceptable risk of death. The proposed methodology is applied to the LCC-effective optimal seismic retrofit and maintenance strategy of a steel bridge considered as a example bridge in the accompanying study, and various conditions such as corrosion environments and Average Daily Traffic Volumes (ADTVs) are considered to investigate the effects on total expected LCC. In addition, to verify the validity of the developed methodology, the results are compared with the existing methodology. From the numerical investigation, it may be positively expected that the proposed methodology can be effectively utilized as a practical tool for the decision-making of LCC-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges.

The Examination of Load Carrying Capacity Based on Existing Data for Improved Safety Assessment Method of Expressway Bridges (고속도로 교량의 개선된 안전성 평가방안을 위한 실측자료에 기초한 공용 내하력 검토)

  • Lee, Jong Ho;Han, Sung Ho;Sin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.597-605
    • /
    • 2009
  • The safety of expressway bridges was estimated by checking the external condition rank based on the nondestructive inspection and material test and by measuring load carrying capacity based on the result of load test. Although the load carrying capacity of the bridges was clearly low compared to the design standard, it was examined that many of the bridges have good external condition rank relatively. Also, it can be assured that load carrying capacity shows a considerable difference according to various condition even though the bridges have similar construction year and a structural type. Therefore, this study showed various problems of the current safety measurement of expressway bridges by considering the status of the expressway bridges, external condition rank, and method of safety diagnosis and repair, rehabilitation for maintenance. Based on the existing data of over 400 expressway bridges, the load carrying capacity was analyzed quantitatively considering bridge type, serviced life, design live load, external condition rank and traffic count as variables. The result of this study will be expected to provide the basic information for a reasonable safety assessment of expressway bridge.

GIS Optimization for Bigdata Analysis and AI Applying (Bigdata 분석과 인공지능 적용한 GIS 최적화 연구)

  • Kwak, Eun-young;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.171-173
    • /
    • 2022
  • The 4th industrial revolution technology is developing people's lives more efficiently. GIS provided on the Internet services such as traffic information and time information makes people getting more quickly to destination. National geographic information service(NGIS) and each local government are making basic data to investigate SOC accessibility for analyzing optimal point. To construct the shortest distance, the accessibility from the starting point to the arrival point is analyzed. Applying road network map, the starting point and the ending point, the shortest distance, the optimal accessibility is calculated by using Dijkstra algorithm. The analysis information from multiple starting points to multiple destinations was required more than 3 steps of manual analysis to decide the position for the optimal point, within about 0.1% error. It took more time to process the many-to-many (M×N) calculation, requiring at least 32G memory specification of the computer. If an optimal proximity analysis service is provided at a desired location more versatile, it is possible to efficiently analyze locations that are vulnerable to business start-up and living facilities access, and facility selection for the public.

  • PDF