• 제목/요약/키워드: traffic detection system

검색결과 532건 처리시간 0.027초

Study on Incident Detection System Using Fuzzy Logic

  • Kim, Intaek;Lee, Eunggi
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.268-271
    • /
    • 1998
  • this paper presents the potential application of fuzzy logic to the automatic incident detection system. While the conventional incident detection algorithms are based on a binary decision process, the algorithm using fuzzy logic can incorporate ambiguity which occurs in determining incidents. Since collecting good amount of data to construct data base for incidents is pretty expensive, a traffic simulator called FRESIM is used to simulate traffic condition in a freeway. Incident data are obtained by changing input parameters of the simulator and the fuzzy algorithm generates fuzzy rule for determining normal and incident traffic conditions. In this paper, various steps are described to test the algorithm and its results are summarized.

  • PDF

다채널 CCTV를 이용한 고속도로 돌발상황 검지 및 분류 알고리즘 (Highway Incident Detection and Classification Algorithms using Multi-Channel CCTV)

  • 장혁;황태현;양훈준;정동석
    • 전자공학회논문지
    • /
    • 제51권2호
    • /
    • pp.23-29
    • /
    • 2014
  • 지능형 교통 시스템(Intelligent Transportation Systems)의 첨단 교통 관리 시스템(Advanced Traffic Management System)은 고화질 카메라, 고성능 레이더 센서와 같은 향상된 인프라를 통하여 도로 상의 차량 속도, 통행량, 돌발 상황 등의 교통 상황을 실시간으로 분석하며 관련 업무를 자동화하고 있다. 특히 도로 이용자의 안전을 위해서는 돌발 상황 자동 검지 및 2차 사고 방지를 위한 시스템이 필요하다. 이러한 유고 검지 및 관리 시스템에서는 CCTV 기반 영상 검지와 레이더를 이용한 물체검지가 주로 사용된다. 본 논문은 다중 감시용 카메라를 사용한 실시간 고속도로 돌발 상황 검지 시스템에서 모자이크(mosaic) 동영상을 구성하는 방법과 다양한 각도에서 촬영된 움직이는 객체를 보다 정확하게 추적할 수 있는 배경 모델링에 기반한 알고리즘을 제안하였다. 실험결과 영상검지는 레이더검지의 근거리 음영 영역과 원거리 검지한계 영역을 보완해 줄 수 있을 뿐만 아니라 악천후를 제외한 주간 검지에서 보다 나은 분류 특징들을 갖고 있음을 확인 할 수 있었다.

ITS를 위한 차량검지시스템을 기반으로 한 교통 정체 예측 모듈 개발 (Development of Traffic Congestion Prediction Module Using Vehicle Detection System for Intelligent Transportation System)

  • 신원식;오세도;김영진
    • 산업공학
    • /
    • 제23권4호
    • /
    • pp.349-356
    • /
    • 2010
  • The role of Intelligent Transportation System (ITS) is to efficiently manipulate the traffic flow and reduce the cost in logistics by using the state of the art technologies which combine telecommunication, sensor, and control technology. Especially, the hardware part of ITS is rapidly adapting to the up-to-date techniques in GPS and telematics to provide essential raw data to the controllers. However, the software part of ITS needs more sophisticated techniques to take care of vast amount of on-line data to be analyzed by the controller for their decision makings. In this paper, the authors develop a traffic congestion prediction model based on several different parameters from the sensory data captured in the Vehicle Detection System (VDS). This model uses the neural network technology in analyzing the traffic flow and predicting the traffic congestion in the designated area. This model also validates the results by analyzing the errors between actual traffic data and prediction program.

SPACE-BASED OCEAN SURVEILLANCE AND SUPPORT CAPABILITY

  • Yang Chan-Su
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.253-256
    • /
    • 2005
  • The use of satellite remote sensing in maritime safety and security can aid in the detection of illegal fishing activities and provide more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which use the ground-based radar system have some difficulties in detecting moving ships due to the limited detection range. A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data. And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. This paper lastly introduce the field testing results of ship detection by RADARSAT SAR imagery, and propose a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

Fisher 선형 분류법을 이용한 비정상 트래픽 탐지 (Traffic Anomaly Detection for Campus Networks using Fisher Linear Discriminant)

  • 박현희;김미정;강철희
    • 전기전자학회논문지
    • /
    • 제13권2호
    • /
    • pp.140-149
    • /
    • 2009
  • 최근 인터넷을 통한 각종 침해사고 및 트래픽 폭주와 같은 현상이 급격하게 증가함에 따라 네트워크의 비정상적 상황을 조기에 탐지하기 위한 보다 능동적이고 진보적인 기술이 요구되고 있다. 본 논문에서는 캠퍼스 네트워크와 같이 트래픽이 주기적인 특성을 띠는 환경에서 Fisher 선형 분류법(FLD)을 사용하여 트래픽을 두 개의 그룹으로 분류하고, 네트워크에 유입되는 트래픽이 어떤 그룹에 속하는지를 판별하는 기법을 제안한다. 이를 위해 WISE-Mon이라 불리는 트래픽 분석 시스템을 개발하여 캠퍼스 네트워크의 트래픽을 수집하고 이를 모니터링해서 분석을 수행한다. 생성된 트래픽의 training set을 이용하여 비정상 트래픽의 범위를 판단하기 위한 chi-square distribution을 유도하고, FLD를 적용하여 유입되는 트래픽을 두 그룹으로 분리하기 위한 초평면 (hyperplane)을 만든다. 또한 네트워크 내의 트래픽 패턴이 시간이 지남에 따라 계속적으로 변하는 상황을 반영하기 위하여 self-learning 알고리즘을 적용한다. 캠퍼스 네트워크의 트래픽을 적용한 수학적 결과를 통하여 제안하는 기법의 정확성과 신뢰도를 보여준다.

  • PDF

A Study on Traffic Light Detection (TLD) as an Advanced Driver Assistance System (ADAS) for Elderly Drivers

  • Roslan, Zhafri Hariz;Cho, Myeon-gyun
    • International Journal of Contents
    • /
    • 제14권2호
    • /
    • pp.24-29
    • /
    • 2018
  • In this paper, we propose an efficient traffic light detection (TLD) method as an advanced driver assistance system (ADAS) for elderly drivers. Since an increase in traffic accidents is associated with the aging population and an increase in elderly drivers causes a serious social problem, the provision of ADAS for older drivers via TLD is becoming a necessary(Ed: verify word choice: necessary?) public service. Therefore, we propose an economical TLD method that can be implemented with a simple black box (built in camera) and a smartphone in the near future. The system utilizes a color pre-processing method to differentiate between the stop and go signals. A mathematical morphology algorithm is used to further enhance the traffic light detection and a circular Hough transform is utilized to detect the traffic light correctly. From the simulation results of the computer vision and image processing based on a proposed algorithm on Matlab, we found that the proposed TLD method can detect the stop and go signals from the traffic lights not only in daytime, but also at night. In the future, it will be possible to reduce the traffic accident rate by recognizing the traffic signal and informing the elderly of how to drive by voice.

비전 기반 주간 LED 교통 신호등 인식 및 신호등 패턴 판단에 관한 연구 (Vision based Traffic Light Detection and Recognition Methods for Daytime LED Traffic Light)

  • 김현구;박주현;정호열
    • 대한임베디드공학회논문지
    • /
    • 제9권3호
    • /
    • pp.145-150
    • /
    • 2014
  • This paper presents an effective vision based method for LED traffic light detection at the daytime. First, the proposed method calculates horizontal coordinates to set region of interest (ROI) on input sequence images. Second, the proposed uses color segmentation method to extract region of green and red traffic light. Next, to classify traffic light and another noise, shape filter and haar-like feature value are used. Finally, temporal delay filter with weight is applied to remove blinking effect of LED traffic light, and state and weight of traffic light detection are used to classify types of traffic light. For simulations, the proposed method is implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM, and tested on the urban and rural road video. Average detection rate of traffic light is 94.50 % and average recognition rate of traffic type is 90.24 %. Average computing time of the proposed method is 11 ms.

교차로 사고음 검지시스템의 방해음향 조사연구

  • 강희구;고영권;김재이
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.805-808
    • /
    • 2008
  • 본 논문에서는 교차로 사고음 자동검지시스템의 검지율 향상을 위하여 다양한 음향패턴을 분석하였는데, 자동검지의 방해요소인 차종별 경적음과 특수목적용 차량의 사이렌음의 음향패턴은 일반적으로 사고음과 비슷한 음압을 가지고 있으나, 각각 다른 주기적인 형태의 주파수 파형으로 구성되어 있음을 확인하였다. 이를 위해, 교차로사고 자동음향감지시스템의 각종 방해요소(자동차 경적, 사이렌음, 기타 잡음 등)들의 파형 및 주파수 특성 등을 분석하는 음향인식기법을 도입하였다. 연구결과, 일반적인 교통소음과 교통사고음의 음향패턴을 비교하면 많은 차이가 있으며, 차량소통의 유무에 따라 약 20[dB]의 오차범위가 존재하는 것으로 나타났다.

  • PDF

끼어들기위반 단속장비의 교통정체 측정에 관한 연구 (A Study on the Measurement of Intruding Vehicles Enforcement System of Traffic Jam)

  • 유성준;정준하;홍순진;강수철
    • 한국ITS학회 논문지
    • /
    • 제12권6호
    • /
    • pp.68-77
    • /
    • 2013
  • 본 연구에서는 끼어들기 위반단속시스템 개발을 위한 교통정체판정방법에 대한 실험적 연구결과를 제시하였다. 해당 정체판정 방법은 정체를 검지하여 끼어들기 위반단속시스템의 최적 구동기준을 결정하는데 목적이 있다. ITS 분야에서 일반적으로 정체판정은 구간통행속도를 기준으로 한다. 그러나 영상검지 방식적용 시 속도오차 등으로 인해 정체판정의 오류가 높게 나타날 수 있으며, 본 연구에서는 현장실험을 통해 속도와 점유율을 종합적으로 고려한 방식을 제시하였다. 현장실험 결과 영상검지체계 기반의 끼어들기위반 단속시스템에서 정체판정 기준으로 속도의 경우 20km/h, 점유율의 경우 60% 이상의 조건을 적용할 경우 실제 정체상황과 같은 결과를 얻을 수 있었고, 정확도를 높일 수 있었다.