DOI QR코드

DOI QR Code

A Study on the Measurement of Intruding Vehicles Enforcement System of Traffic Jam

끼어들기위반 단속장비의 교통정체 측정에 관한 연구

  • 유성준 (도로교통공단 교통과학연구원) ;
  • 정준하 (도로교통공단 교통과학연구원, 교통공학연구실) ;
  • 홍순진 (도로교통공단 교통과학연구원) ;
  • 강수철 (도로교통공단 교통과학연구원)
  • Received : 2013.10.16
  • Accepted : 2013.12.20
  • Published : 2013.12.31

Abstract

This study suggested experimental study results of congestion detection method for intruding vehicle enforcement system. This congestion detection method is developed to determine optimal operation criteria of intruding vehicle enforcement system as detecting traffic congestion. In ITS sector, traffic management systems generally have used a sectional travel speed for congestion detection. However, image sensors have high error rate of congestion detection because of speed error. This study suggested comprehensive congestion detection criteria based on speed and occupancy rate using field studies. As field study results, the proposed intruding vehicle enforcement system using image sensor is capable of accurately detecting the traffic congestion using sectional speed of 20km/h and occupancy rate of 60% as congestion detection criteria.

본 연구에서는 끼어들기 위반단속시스템 개발을 위한 교통정체판정방법에 대한 실험적 연구결과를 제시하였다. 해당 정체판정 방법은 정체를 검지하여 끼어들기 위반단속시스템의 최적 구동기준을 결정하는데 목적이 있다. ITS 분야에서 일반적으로 정체판정은 구간통행속도를 기준으로 한다. 그러나 영상검지 방식적용 시 속도오차 등으로 인해 정체판정의 오류가 높게 나타날 수 있으며, 본 연구에서는 현장실험을 통해 속도와 점유율을 종합적으로 고려한 방식을 제시하였다. 현장실험 결과 영상검지체계 기반의 끼어들기위반 단속시스템에서 정체판정 기준으로 속도의 경우 20km/h, 점유율의 경우 60% 이상의 조건을 적용할 경우 실제 정체상황과 같은 결과를 얻을 수 있었고, 정확도를 높일 수 있었다.

Keywords

References

  1. W. K. Kim, The Development of Detedction Algorithm by Image Detection Method about Vehicle Intrading into the Exit Ramp, Graduate School of Dongguk University, 2009
  2. J. C. Lee, "A Study on Congestion Threshold Using Break Point Analysis in Urban Freeway" Myong ji University. 2006
  3. H. M. Lee, "Error of The Traffic Information using Point-based Vehicle Detector", Korean Society of Transportation, Joumal of Korean Society of Transportation. 2009
  4. Y. J. Kim, "Development of a freeway incident detection model based on traffic congestion classification scheme" Korean Society of Transportation, Joumal of Korean Society of Transportation vol. 22 no. 6, pp.175-196 December, 2004
  5. H. I. Seo, "(A) study of qualitative traffic condition decision index development on urban arterial" Han yoang University. 2012
  6. E. M. Park, "Preventive Congestion Management Algorithm for Ubiquitous Freeway System" Korean Society of Transportation, Joumal of Korean Society of Transportation vol. 27 no. 3, pp.161-168 June, 2009
  7. L. A. Klein, "Sensor Technologies and Data Requirements for ITS", pp.103-115, 2002
  8. J. H. Jang, "vehicle speed detector performance by image analysis," Journal of Transportation vol. 23, Issue 5, pp.105- 112, 2005
  9. S. J. Yoo "Vehicle violation enforcement equipment Barge Analysis of the development and installation effects" Road Transport Corporation Transport Instruction Manual 2008-2, 2008.