• Title/Summary/Keyword: traditional learning

Search Result 1,841, Processing Time 0.027 seconds

A Navigation System for Mobile Robot

  • Zhang, Yuanliang;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.118-120
    • /
    • 2009
  • In this paper, we present the Q-learning method for adaptive traffic signal control on the basis of multi-agent technology. The structure is composed of sixphase agents and one intersection agent. Wireless communication network provides the possibility of the cooperation of agents. As one kind of reinforcement learning, Q-learning is adopted as the algorithm of the control mechanism, which can acquire optical control strategies from delayed reward; furthermore, we adopt dynamic learning method instead of static method, which is more practical. Simulation result indicates that it is more effective than traditional signal system.

  • PDF

A Meta-Analysis on the Effectiveness of Smart-Learning in the field of General Education and Fisheries & Marine Education (일반교육과 수해양 교과교육에서 스마트교육미디어 효과성 연구)

  • HEO, Gyun;GU, Jung-Mo;HAN, Sang-Jun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.1
    • /
    • pp.128-136
    • /
    • 2017
  • The purpose of this research is to analyze the effects of smart learning in both general education and fisheries & marine education through meta-analysis. To find the effects size, we had collected 112 studies from graduation theses and journal articles. Followings are the results of the research: (a) Smart learning turns out to be more statistically effective comparing to traditional education. The total effect size of smart learning is .768 and the value of U3 is 61.50%. (b) There is no significant difference between general education and fisheries & marine education in the view of effect size. (c) There is a significant difference in subjects, type of publication, and size of members in experimental group. High school student group has the most effect size of smart learning.

A Study on the Cost-Volume-Profit Analysis Adjusted for Learning Curve (C.V.P. 분석에 있어서 학습곡선의 적용에 관한 연구)

  • 연경화
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.5 no.6
    • /
    • pp.69-78
    • /
    • 1982
  • Traditional CVP (Cost-Volume-Profit) analysis employs linear cost and revenue functions within some specified time period and range of operations. Therefore CVP analysis is assumption of constant labor productivity. The use of linear cost functions implicity assumes, among other things, that firm's labor force is either a homogenous group or a collection homogenous subgroups in a constant mix, and that total production changes in a linear fashion through appropriate increase or decrease of seemingly interchangeable labor unit. But productivity rates in many firms are known to change with additional manufacturing experience in employee skill. Learning curve is intended to subsume the effects of all these resources of productivity. This learning phenomenon is quantifiable in the form of a learning curve, or manufacturing progress function. The purpose d this study is to show how alternative assumptions regarding a firm's labor force may be utilize by integrating conventional CVP analysis with learning curve theory, Explicit consideration of the effect of learning should substantially enrich CVP analysis and improve its use as a tool for planning and control of industry.

  • PDF

A Flipped Classroom Model For Algorithm In College

  • Lee, Su-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.153-159
    • /
    • 2017
  • In recent years there has been a rise in the use and interest of the flipped learning as a teaching and learning paradigm. The flipped learning model includes any use of Internet technology to enrich the learning in a classroom, so that a professor can spend more time interacting with students instead of lecturing. In the flipped model, students viewed video lectures online outside of class time. Students then performed two kinds of assignments, a teamwork assignment and an individual work assignment, through the class time. In this paper, we propose a flipped educational model for a college class. This experimental research compares class of college algorithm using the flipped classroom methods and the traditional lecture-homework structure and its effect on student achievement. The result data of mid-term exam and final exam were analyzed and compared with previous year data. The findings of this research show that there was not a significant difference in the scores of student between two lecturing methods. The survey result and lecture evaluation by students show that students are in favor of the flipped learning.

Research Trends on Deep Learning for Anomaly Detection of Aviation Safety (딥러닝 기반 항공안전 이상치 탐지 기술 동향)

  • Park, N.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.5
    • /
    • pp.82-91
    • /
    • 2021
  • This study reviews application of data-driven anomaly detection techniques to the aviation domain. Recent advances in deep learning have inspired significant anomaly detection research, and numerous methods have been proposed. However, some of these advances have not yet been explored in aviation systems. After briefly introducing aviation safety issues, data-driven anomaly detection models are introduced. Along with traditional statistical and well-established machine learning models, the state-of-the-art deep learning models for anomaly detection are reviewed. In particular, the pros and cons of hybrid techniques that incorporate an existing model and a deep model are reviewed. The characteristics and applications of deep learning models are described, and the possibility of applying deep learning methods in the aviation field is discussed.

Corporate Innovation and Business Performance Prediction Using Ensemble Learning (앙상블 학습을 이용한 기업혁신과 경영성과 예측)

  • An, Kyung Min;Lee, Young Chan
    • The Journal of Information Systems
    • /
    • v.30 no.4
    • /
    • pp.247-275
    • /
    • 2021
  • Purpose This study attempted to predict corporate innovation and business performance using ensemble learning. Design/methodology/approach The ensemble techniques uses weak learning to create robust learning, which combines several weak models to derive improved performance. In this study, XGboost, LightGBM, and Catboost were used among ensemble techniques. It was compared and evaluated with traditional machine learning methods. Findings The summary of the research results is as follows. First, the type of innovation is expanding from technical innovation to non-technical areas. Second, it was confirmed that LightGBM performed best for radical innovation prediction, and XGboost performed best for incremental innovation prediction. Third, Catboost performed best for firm performance prediction. Although there was no significant difference in predictive power between ensemble techniques, we found that comparative analysis was necessary to confirm better prediction performance.

Building a Model(s) to Examine the Interdependency of Content Knowledge and Reasoning as Resources for Learning

  • Cikmaz, Ali;Hwang, Jihyun;Hand, Brian
    • Research in Mathematical Education
    • /
    • v.25 no.2
    • /
    • pp.135-158
    • /
    • 2022
  • This study aimed to building models to understand the relationships between reasoning resources and content knowledge. We applied Support Vector Machine and linear models to the data including fifth graders' scores in the Cornel Critical Thinking Test and the Iowa Assessments, demographic information, and learning science approach (a student-centered approach to learning called the Science Writing Heuristic [SWH] or traditional). The SWH model showing the relationships between critical thinking domains and academic achievement at grade 5 was developed, and its validity was tested across different learning environments. We also evaluated the stability of the model by applying the SWH models to the data of the grade levels. The findings can help mathematics educators understand how critical thinking and achievement relate to each other. Furthermore, the findings suggested that reasoning in mathematics classrooms can promote performance on standardized tests.

Current Status of Automatic Fish Measurement (어류의 외부형질 측정 자동화 개발 현황)

  • Yi, Myunggi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.638-644
    • /
    • 2022
  • The measurement of morphological features is essential in aquaculture, fish industry and the management of fishery resources. The measurement of fish requires a large investment of manpower and time. To save time and labor for fish measurement, automated and reliable measurement methods have been developed. Automation was achieved by applying computer vision and machine learning techniques. Recently, machine learning methods based on deep learning have been used for most automatic fish measurement studies. Here, we review the current status of automatic fish measurement with traditional computer vision methods and deep learning-based methods.

Deep Reinforcement Learning in ROS-based autonomous robot navigation

  • Roland, Cubahiro;Choi, Donggyu;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.47-49
    • /
    • 2022
  • Robot navigation has seen a major improvement since the the rediscovery of the potential of Artificial Intelligence (AI) and the attention it has garnered in research circles. A notable achievement in the area was Deep Learning (DL) application in computer vision with outstanding daily life applications such as face-recognition, object detection, and more. However, robotics in general still depend on human inputs in certain areas such as localization, navigation, etc. In this paper, we propose a study case of robot navigation based on deep reinforcement technology. We look into the benefits of switching from traditional ROS-based navigation algorithms towards machine learning approaches and methods. We describe the state-of-the-art technology by introducing the concepts of Reinforcement Learning (RL), Deep Learning (DL) and DRL before before focusing on visual navigation based on DRL. The case study preludes further real life deployment in which mobile navigational agent learns to navigate unbeknownst areas.

  • PDF

Deep Learning Method for Identification and Selection of Relevant Features

  • Vejendla Lakshman
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.212-216
    • /
    • 2024
  • Feature Selection have turned into the main point of investigations particularly in bioinformatics where there are numerous applications. Deep learning technique is a useful asset to choose features, anyway not all calculations are on an equivalent balance with regards to selection of relevant features. To be sure, numerous techniques have been proposed to select multiple features using deep learning techniques. Because of the deep learning, neural systems have profited a gigantic top recovery in the previous couple of years. Anyway neural systems are blackbox models and not many endeavors have been made so as to examine the fundamental procedure. In this proposed work a new calculations so as to do feature selection with deep learning systems is introduced. To evaluate our outcomes, we create relapse and grouping issues which enable us to think about every calculation on various fronts: exhibitions, calculation time and limitations. The outcomes acquired are truly encouraging since we figure out how to accomplish our objective by outperforming irregular backwoods exhibitions for each situation. The results prove that the proposed method exhibits better performance than the traditional methods.