• Title/Summary/Keyword: traditional herb

Search Result 612, Processing Time 0.04 seconds

Properties of the Silkworm (Bombyx mori) Dongchunghacho, a Newly Developed Korean Medicinal Insect-borne Mushroom: Mass-production and Pharmacological Actions (한국에서 개발된 곤충유래 약용버섯인 누에동충하초의 생산기술개발 및 약리학적 특성)

  • Lee, Sang Mong;Kim, Yong Gyun;Park, Hyean Cheal;Kim, Keun Ki;Son, Hong Joo;Hong, Chang Oh;Park, Nam Sook
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.247-266
    • /
    • 2017
  • Cordyceps is a traditional Chinese medicinal herb well-known in China, Korea and Japan since B.C. 2,000. The original entomopathogenic fungus, Cordyceps sinensis belonging to the genus Cordyceps could not be found inside Korean peninsula due to the absence of the host insect for the corresponding entomogenous fungus. The development of artificial production methods of Korean type Cordyceps using the silkworm Bombyx mori as in vivo culture medium for the the entomopathogenic fungus Paecilomyces tenuipes is the first, and wonderful occasion in the research history of insect industry of this global world. The aim of this article is to review the historical research background, mass-production methods, and pharmacological effects of the silkworm-dongchunghacho (Paecilomyces tenuipes) which is a newly developed Korean medicinal insect-borne mushroom, and another non-insect-borne medicinal mushroom (Cordyceps militaris and Cordyceps pruinosa). Their biological actions include anti-tumor, immunostimulating, anti-fatigue, anti-stress, anti-oxidant, anti-aging, anti-diabetic, anti-inflammatory, anti-thrombosis, hypolipidaemic and insecticidal effects. The bioactive principles are protein-bound polysaccharides (hexose, hexosamin), cordycepin, D-manitol, acidic polysaccharide etc. Protein-bound polysaccharides and n-butanol fractions were demonstrated to show a significant anti-tumor activities but did not show a cytotoxicities. D-mannitol exhibited a significant prolongation of the life span in tumor bearing mice. Ergosterol did not show an efficient anti-tumor activity, but showed a significant phagocytosis enhancing activity. Anti-tumor activity of silkworm-dongchunghacho might be attributed to immuno-stimulating activities rather than cytotoxic effects [164]. Also this review comprises the breeding of Dongchunghacho varieties, optimization of culture conditions, improvement of learning and memory by Dongchunghacho, application of them as foods and chemical constituents.

Ethanol Extracts of Mori Folium Inhibit Adipogenesis Through Activation of AMPK Signaling Pathway in 3T3-L1 Preadipocytes (3T3-L1 세포에서 상엽이 유발하는 AMPK signaling pathway를 통한 adipogenesis 억제에 관한 연구)

  • Ji, Seon Young;Jeon, Keong Yoon;Jeong, Jin Woo;Hong, Su Hyun;Huh, Man Kyu;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.155-163
    • /
    • 2017
  • Mori Folium, the leaf of Morus alba, is a traditional medicinal herb that shows various pharmacological activities such as antiinflammatory, antidiabetic, antimelanogenesis, antioxidant, antibacterial, antiallergic, and immunomodulatory activities. However, the mechanisms of their inhibitory effects on adipocyte differentiation and adipogenesis remain poorly understood. In the present study, we investigated the inhibition of adipocyte differentiation and adipogenesis by ethanol extracts of Mori Folium (EEMF) in 3T3-L1 preadipocytes. Treatment with EEMF suppressed the terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in the lipid droplet number and lipid content through Oil Red O staining. EEMF significantly reduced the accumulation of cellular triglyceride, which is associated with a significant inhibition of pro-adipogenic transcription factors, including sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR{\gamma}$), and CCAAT/enhancer-binding proteins ${\alpha}$ ($C/EBP{\alpha}$) and ${\beta}$ ($C/EBP{\beta}$). In addition, EEMF potentially downregulated the expression of adipocyte-specific genes, including adipocyte fatty acid binding protein (aP2) and leptin. Furthermore, EEMF treatment effectively increased the phosphorylation of the AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase (ACC); however, treatment with a potent inhibitor of AMPK, compound C, significantly restored the EEMF-induced inhibition of pro-adipogenic transcription factors and adipocyte-specific genes. These results together indicate that EEMF has preeminent effects on the inhibition of adipogenesis through the AMPK signaling pathway, and further studies will be needed to identify the active compounds in Mori Folium.

Antimicrobial Activity of Medicinal Herbs against Staphylococcus aureus (Staphylococcus aureus에 대한 한약재의 항균활성)

  • Cho, Jae-Yong;Lim, Sang-Cheol;Choi, Il
    • Korean Journal of Plant Resources
    • /
    • v.19 no.4
    • /
    • pp.491-496
    • /
    • 2006
  • Antimicrobial activity of 18 different traditional medicinal herbs extracts against Staphylococcus aureus was determined by a paper disc method. The Prunella vulgaris, Caesalpinia sappan and Rhus javanica extracts in 5 mg/ml, Poncirus trifoliata, Lonicera japonica and Seutellaria baicalensis extracts in 10 mg/ml and Schizandra chinensis, Alpinia katsumadai, Siegesbeckia orientalis extracts in 30 mg/ml showed a significant antimicrobial activity against Staphylococcus aureus. Minimum inhibitory concentrations of medicinal herbs extracts were in the range of $1{\sim}34\;mg/ml$ and $1{\sim}46\;mg/ml$, in the case of MeOH extracts and EtOH extracts, respectively. In addition, the antimicrobial activity of each solvent fraction was most significant with EtOAc layer. Optical density at 620nm after 24 hours incubation of Staphylococcus aureus in the presence of 100, 300 or 500 ppm of Caesalpinia sappan extract ranged from 0.02 to 0.03 compared to 0.4 in the absence of Caesalpinia sappan extract, indicating that growth of Staphylococcus aureus was significantly inhibited within 24 hours by the addition of at least 100 ppm of Caesalpinia sappan extract. Optical density at 620 nm after 24 hours incubation of Staphylococcus aureus in the presence of 300 ppm of Rhus javanica extract ranged from 0.02 to 0.03 compared to 0.4 in the absence of Rhus javanica extract, indicating that growth of Staphylococcus aureus was also significantly inhibited within 24 hours by the addition of at least 300 ppm of Rhus javanica extract. Optical density at 620 nm after 24 hours incubation of Staphylococcus aureus in the presence of 300 ppm of Seutellaria baicalensis extract ranged from 0.02 to 0.07 compared to 0.4 in the absence of Seutellaria baicalensis extract, indicating that growth of Staphylococcus aureus was also significantly inhibited within 24 hours by the addition of at least 300 ppm of Seutellaria baicalensis extract. In conclusion, these findings suggest that extracts from medicinal herbs may play important roles for antimicrobial activities against Staphylococcus aureus.

Antimicrobial Activities of Natural Medicinal Herbs on the Food Spoilage or Foodborne Disease Microorganisms (식품부패 및 병원성미생물에 대한 천연약용식물 추출물의 항균효과)

  • Oh, Deog-Hwan;Ham, Seung-Shi;Park, Boo-Kil;Ahn, Cheol;Yu, Jin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.957-963
    • /
    • 1998
  • Several medicinal herbs, which are nontoxic and have been used widely in traditional folk medicine, were extracted and antimicrobial activity of the extracts was investigated against various foodborne pathogens or food poisioning microorganisms. The ethanol extract of Sansa, Hwangryun, Cheukbaek, and Seokchangpo showed strong antimicrobial activities against Gram postive and Gram negative bacteria, whereas those of Sakunja, Sukjihwang and Baekji had little antimicrobial activities on microorganisms tested. Among medicinal herb extracts, ethanol extract of Coptis chinensis Franch (hwangryun) showed the strongest antimicrobial activity. Antimicrobial activity of ethanol extract of Coptis chinensis Franch was not destroyed by heating at $100^{\circ}C$ for 60 min and at $121^{\circ}C$ for 30 min, which is very stable over heat. The pH effect on minimal inhibitory concentrations (MIC) of the extract of Coptis chinensis Franch indicated that MIC was reduced with increasing the pH value of the medium. The inhibitory effect of partially purified substance from the ethanol extract of Coptis chinensis Franch on the growth of Listeria monocytogenes and Staphylococcus aureus was investigated. Growth of those strains occurred at the concentration of $100{\;}{\mu}g/mL$ and were inhibited at $500{\;}{\mu}g/mL$, whereas those strains was completely inactivated in the presence of $1000{\;}{\mu}g/mL$.

  • PDF

Antioxidant and anti-inflammatory effects of red garlic compositions (홍마늘 조성물의 항산화 및 항염증 효과)

  • Kang, Min Jung;Kim, Dong-Gyu;Shin, Jung Hye
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.446-454
    • /
    • 2017
  • Garlic (Allium sativum L.) and traditional herb has several functional properties and strong biological activities, making it useful as a functional food material. We investigated the antioxidant and anti-inflammatory activity of mixed compounds from red garlic and supplementary materials, including ginger (Zingiber officinale Roscoe), doraji (Platycodon grandiflorum), quince (Chaenomeles sinensis), citrus peel (Citri Pericarpium), and mint (Mentha arvensis). The extracts were prepared with water (W) and ethanol (E) at $70^{\circ}C$ (W-70, E-70) and $95^{\circ}C$ (W-95, E-95) for 3 h. The total content of phenolic compounds was the highest in E-70 (608.60 mg/100 g). Alliin, one of the active ingredients in red garlic, was contained at 1.18-1.29 mg/g and 0.81-0.85 mg/g in water and ethanol extract, respectively. Another active ingredient of red garlic, S-allyl-cysteine (SAC) had higher content in the water extract than in the ethanol extracts. DPPH radical scavenging activity was higher in E-70 (15.96-73.65%) at $313-5,000{\mu}g/mL$. ABTS radical scavenging activity was also higher in E-70 (5.71-77.19%) than in the others. The ROS production rate showed the same tendency as the NO production, with more efficacy in E-95. The expression level of iNOS and $IL-1{\beta}$ was decreased in the E-95 significantly at the concentration of $1,000{\mu}g/mL$ compared to the lipopolysaccharide (LPS) treated group. Based on the above results, the antioxidative and anti-inflammatory activities of the extracts of red garlic and supplementary materials were expressed by different useful substances. The contents of these useful substances were different according to the extraction solvent and temperature.

Hydrolysis of Non-digestible Components of Soybean Meal by α-Galactosidase from Bacillus coagulans NRR1207 (Bacillus coagulans NRR1207이 생산하는 α-galactosidase에 의한 대두박 비소화성분의 가수분해)

  • Ra, Seok Han;Renchinkhand, Gereltuya;Park, Min-gil;Kim, Woan-sub;Paik, Seung-Hee;Nam, Myoung Soo
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1347-1353
    • /
    • 2018
  • The fermentation of non-digestible soy meal can convert polysaccharides into many compounds that have a wide variety of biological functions. Bacillus strains are capable of hydrolyzing non-digestible saccharides, such as melibiose, raffinose, and stachyose, found in soy meal components. A highly active ${\alpha}$-galactosidase (${\alpha}$-d-galactoside galactohydrolase, EC 3.2.1.22) was isolated from a bacterium in a traditional Korean fermented medicinal herb preparation. The isolate, T2-16, was identified as Bacillus coagulans based on its 16S rRNA sequence and biochemical properties, and the strain was named Bacillus coagulans NRR-1207. When incubated in 10%(w/v) skim milk, Bacillus coagulans NRR1207 caused a decrease in the pH of the culture medium, as well as an increase in titratable acidity and viable cell counts. This strain also showed higher activities of ${\alpha}$-galactosidase, ${\beta}$-galactosidase, ${\alpha}$-glucosidase, naphthol-AS-BO-phosphohydrolase, and acid phosphatase when compared to other enzymes. It hydrolyzed oligomeric substrates, such as raffinose and stachyose, and liberated galactose, indicating that the Bacillus coagulans NRR1207 ${\alpha}$-galactosidase hydrolyzed the ${\alpha}$-1,6 glycoside linkage. These results suggest that the decreased stachyose and raffinose contents observed in fermented soy meal are due to this ${\alpha}$-galactosidase activity. Bacillus coagulans NRR1207 therefore has potential probiotic activity and could be utilized in feed manufacturing, as well as for hydrolyzing non-digestible soy meal components.

Changes in the constituents and UV-photoprotective activity of Astragalus membranaceus caused by roasting (황기의 볶음 조건에 따른 성분 및 자외선 광보호 활성 변화)

  • Park, Jeong-Yong;Lee, Ji Yeon;Kim, Hyung Don;Jang, Gwi Yeong;Seo, Kyung Hye
    • Journal of Nutrition and Health
    • /
    • v.52 no.5
    • /
    • pp.413-421
    • /
    • 2019
  • Purpose: Astragalus membranaceus (AM) is an important traditional medicinal herb. Pharmacological research has indicated that AM has various physiological activities such as antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, and hepatoprotective activities. The bioactive substances responsible for the physiological activities in AM, including many antioxidant substances, change during the roasting process. This study investigated and compared the changes in the antioxidant constituents of AM caused by roasting. Methods: DPPH (1,1-diphenyl-2-picryl hydrazyl) and $ABTS^+$ (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) radical scavenging activities and their total phenolic content (TPC) were measured. High-performance liquid chromatography (HPLC) analysis was performed to confirm any changes in the isoflavonoids of roasted AM (R-AM),. The cell viability of UVB-induced HDF (Human dermal fibroblast) cells treated with AM and R-AM extracts was investigated. The comet assay was used to examine the inhibitory effects of R-AM extracts on DNA damage caused by oxidative stress. Results: The DPPH and $ABTS^+$ radical scavenging activities were $564.6{\pm}20.9$ and $108.2{\pm}3.1$ ($IC_{50}$ value) respectively, from the 2R-AM. The total phenol content was $47.80{\pm}1.40mg$ GAE/g from the 1R-AM. The values of calycosin and formononetin, which are the known isoflavonoid constituents of AM, were $778.58{\pm}2.72$ and $726.80{\pm}3.45{\mu}g/g$ respectively, from the 2R-AM. Treatment of the HDF cells with R-AM ($50{\sim}200{\mu}g/mL$) did not affect the cell viability. Furthermore, the R-AM extracts effectively protected against UVB-induced DNA damage. Conclusion: The findings of this study indicate that R-AM increases its isoflavonoid constituents and protects against UVB-induced DNA damage in HDF cells.

Analysis of Index Component Content and Antioxidant Activity According to the Root Diameter of Angelica gigas Nakai (참당귀 뿌리 직경별 지표성분 함량 및 항산화 활성 분석)

  • Lee, Sang-Hoon;Lee, So-Hee;Jin, Meilan;Hong, Chung-Oui;Hur, Mok;Han, Jong-Won;Lee, Woo-Moon;Yun, Hyeong Muk;Kim, Yeon Bok;Lee, Yi;Koo, Sung Cheol
    • Korean Journal of Plant Resources
    • /
    • v.32 no.2
    • /
    • pp.116-123
    • /
    • 2019
  • Angelica gigas Nakai (AGN) is a traditional medicinal herb especially in Korea. It contains pyranocoumarins, which are major active components including decursin (D) and decursinol angelate (DA). This study was carried out to determine the change in active component content and antioxidant activity depending on the root diameter of AGN. Several processing steps are involved to use AGN roots as medicine. The dried AGN roots are divided into body (B), thick root (TkR), medium root (MR) and thin root (TnR) according to their diameter before cutting into medicine. The recovery rates of each root parts per 100 kg were measured as $32.3{\pm}2.5$, $9.0{\pm}1.0$, $39.3{\pm}2.1$ and $15.0{\pm}1.0%$, respectively and the mean diameters were measured as $51.95{\pm}4.55$, $7.05{\pm}0.89$, $2.88{\pm}0.49$ and $1.57{\pm}0.32mm$. Two index components, D and DA, were analyzed. The change of both D and DA content showed a similar tendency. Both D and DA content were increased as the root diameter decreased (higher in TnR). In addition, antioxidant activity was higher in B and TnR, and lower in TkR and MR than control. This study showed that the thinner the root diameter, the higher the D and DA content in AGN roots and that TnR has excellent antioxidant activity compared to other root parts, suggesting that the thinner root part of AGN could be used as a potential material.

Increased Anti-oxidative Activity and Whitening Effects of a Saposhnikovia Extract Following Bioconversion Fermentation using Lactobacillus plantarum BHN-LAB 33 (Lactobacillus plantarum BHN-LAB 33의 생물전환공정을 통한 방풍 발효 추출물의 항산화 활성 및 미백 활성 증대 효과)

  • Kim, Byung-Hyuk;Jang, Jong-Ok;Lee, Jun-Hyeong;Park, YeEun;Kim, Jung-Gyu;Yoon, Yeo-Cho;Jeong, Su Jin;Kwon, Gi-Seok;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1208-1217
    • /
    • 2019
  • Saposhnikovia has been used as a traditional medicinal herb in Asia because of the reported anti-inflammatory, anti-allergic rhinitis, pro-whitening, anti-atopy, anti-allergy, and anti-dermatopathy effects of the phytochemical compounds it contains. In this study, we investigated the antioxidant effects of a Saposhnikovia extract after fermentation by Lactobacillus plantarum BHN-LAB 33. Saposhnikovia powder was inoculated with L. plantarum BHN-LAB 33 and fermented at $37^{\circ}C$ for 72 hr. After fermentation, the total polyphenol content of the Saposhnikovia extract increased by about 14%, and the total flavonoid content increased by about 9%. The superoxide dismutase-like activities, DPPH radical scavenging, ABTS radical scavenging, reducing power activity, and tyrosinase inhibition activity also increased after fermentation by approximately 70%, 80%, 45%, 39%, and 44%, respectively. The results confirmed that fermentation of a Saposhnikovia extract by L. plantarum BHN-LAB 33 is an effective way to increase the antioxidant effects of the extract. The bioconversion process investigated in this study may have the potential to produce phytochemical-enriched natural antioxidant agents with high added value from Saposhnikovia matrices. These results can also be applied to the development of improved foods and cosmetic materials.

Effects of Compounds Isolated from an Ethanol Extract of the Sclerotium of Wolfiporia hoelen on Osteoblast Differentiation and Osteoclast Formation (복령 균핵의 에탄올 추출물에서 분리한 화합물의 조골세포 분화 촉진 및 파골세포 생성 억제 효과)

  • Sora Lee;Seokju Kim;Bowook Moon;Sik-Won Choi;Rhim Ryoo;Hyung Won Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.73-87
    • /
    • 2024
  • Wolfiporia hoelen (Fr.) Y.C.Dai & V. Papp, commonly known as Poria cocos, is a significant traditional herb used for medicinal and culinary purposes Asian and European countries. Many studies have confirmed that the main components of W. hoelen have pharmacological activities and thatits extract has been shown to affect bone metabolism. This study aimed to the potential of a 50% ethanol extract of the sclerotium of W. hoelen for preventing and treating bone diseases. The ethanol extract was systematically fractionated using n-hexane, dichloromethane, and ethyl acetate. The dichloromethane fraction caused an approximately 29% increase in alkaline phosphatase (ALP) differentiation activity in C2C12 cells compared to the control. Four compounds isolated from this active dichloromethane fraction were identified through instrumental analysis and literature references as 3α-dehydrotrametenolic acid, ergosterol, pachymic acid, and dehydrotumulosic acid. All four compounds were evaluated at increasing concentrations (1, 3, 10, 30, and 100 μM) to determine their effects on ALP differentiation activity in C2C12 cells and RANKL-induced inhibition activity in bone marrow macrophages (BMMs), with a concurrent assessment of cytotoxicity at these concentrations. At a concentration of 3 μM, dehydrotumulosic acid caused a 160% increase in ALP activity, 24% higher than in the BMP-2 control. BMMs treated with dehydrotumulosic acid at concentrations between 10 and 100 μM showed a substantial 15-86% decrease in RANKL-induced inhibition activity compared to the control, with distinct patterns of RANKL inhibition and cytotoxicity observed at 10 μM. These findings suggest that the ethanol extract from the sclerotium of W. hoelen has potential to modulate bone-cell differentiation, while highlighting the possible benefits of dehydrotumulosic acid isolated from the dichloromethane fraction of W. hoelen for preventing and treating osteoporosis.