• Title/Summary/Keyword: traction performance

Search Result 328, Processing Time 0.023 seconds

Effect of Vinyl Group Content of the Functionalized Liquid Butadiene Rubber as a Processing Aid on the Properties of Silica Filled Rubber Compounds

  • Kim, Donghyuk;Ahn, Byungkyu;Ryu, Gyeongchan;Hwang, Kiwon;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.152-163
    • /
    • 2021
  • Liquid butadiene rubber (LqBR) is used as a processing aid and plays a vital role in the manufacture of high-performance tire tread compounds. In this study, center-functionalized LqBR (C-LqBR) was polymerized with different vinyl content via anionic polymerization. The effects of the vinyl content on the properties of the compounds were investigated by partially replacing the treated distillate aromatic extract (TDAE) oil with C-LqBR in silica-filled rubber compounds. C-LqBR compounds showed a low Payne effect and Mooney viscosity regardless of the vinyl content, because of improved silica dispersion due to the ethoxysilyl group. As the vinyl content of C-LqBR increased, the optimum cure time (t90) increased owing to a decrease in the number of allylic hydrogen. Moreover, the glass transition temperature (Tg) of the compound increased, and snow traction and abrasion resistance performance decreased, whereas wet grip improved. The energy loss characteristics revealed that the hysteresis attributed to the free chain ends of C-LqBR was dominant.

Development of the Pipe Construction Robot for Rehabilitation Work Process of the Water Pipe Lines (상수도 배관의 갱생 공정을 위한 배관 건설 로봇 개발)

  • Jeong, Myeong-Su;Lee, Jaeyoul;Hong, Sung-Ho;Jang, Minwoo;Shin, Dongho;Hahm, Jehun;Seo, Kap-Ho;Seo, Jin-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.223-231
    • /
    • 2021
  • In this paper describes the research and development of a pipe robot for pipe rehabilitation construction of old water pipes. After the water supply pipe construction, the pipe is leaking, damaged, and aging due to corrosion. Eventually, resistance to the flow of water in lower supply efficiency and contaminated water such as rusty water, finally in various consumer complaints. In order to solve this problem, rehabilitation construction robot technology is required to secure the construction quality of pipe rehabilitation construction and restore the function of the initial construction period. The developed pipe rehabilitation construction robot required a hydraulic actuator for high traction and was equipped with a small hydraulic supply device. In addition, we have developed a hydraulic cylinder and a link system that supports the pipe inner diameter to develop a single pipe robot corresponding to 500 to 800mm pipe diameter. The analysis and experimental verification of the driving performance and unit function of the developed pipe reconstruction robot are explained, and the result of the integrated performance test of the pipe reconstruction robot at the water supply pipe network site is explained.

Development and performance evaluation of lateral control simulation-based multi-body dynamics model for autonomous agricultural tractor

  • Mo A Son;Hyeon Ho Jeon;Seung Yun Baek;Seung Min Baek;Wan Soo Kim;Yeon Soo Kim;Dae Yun Shin;Ryu Gap Lim;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.773-784
    • /
    • 2023
  • In this study, we developed a dynamic model and steering controller model for an autonomous tractor and evaluated their performance. The traction force was measured using a 6-component load cell, and the rotational speed of the wheels was monitored using proximity sensors installed on the axles. Torque sensors were employed to measure the axle torque. The PI (proportional integral) controller's coefficients were determined using the trial-error method. The coefficient of the P varied in the range of 0.1 - 0.5 and the I coefficient was determined in 3 increments of 0.01, 0.05, and 0.1. To validate the simulation model, we conducted RMS (root mean square) comparisons between the measured data of axle torque and the simulation results. The performance of the steering controller model was evaluated by analyzing the damping ratio calculated with the first and second overshoots. The average front and rear axle torque ranged from 3.29 - 3.44 and 6.98 - 7.41 kNm, respectively. The average rotational speed of the wheel ranged from 29.21 - 30.55 rpm at the front, and from 21.46 - 21.63 rpm at the rear. The steering controller model exhibited the most stable control performance when the coefficients of P and I were set at 0.5 and 0.01, respectively. The RMS analysis of the axle torque results indicated that the left and right wheel errors were approximately 1.52% and 2.61% (at front) and 7.45% and 7.28% (at rear), respectively.

Comparison of Control Strategies for Military Series-Type HEVs in Terms of Fuel Economy Based on Vehicle Simulation (시뮬레이션을 이용한 군용 직렬형 HEV 의 주행 전략에 따른 연비 성능 비교에 관한 연구)

  • Jung, Dae-Bong;Kim, Hyung-Jun;Kang, Hyung-Mook;Park, Jae-Man;Min, Kyoung-Doug;Seo, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • Military vehicles, compared to conventional vehicles, require higher driving performance, quieter operation, and longer driving distances with minimal fuel supplies. The series hybrid electric vehicle can be driven with no noise and has high initial startup performance, because it uses only a traction motor that has a high startup torque to drive the vehicle. Moreover, the fuel economy can be improved if the vehicle is hybridized. In series hybrid electric vehicles, the electric generation system, which consists of an engine and a generator, supplies electric energy to a battery or traction motor depending on the vehicle driving state and battery state of charge (SOC). The control strategy determines the operation of the generation system. Thus, the fuel economy of the series hybrid electric vehicle relies on the control strategy. In this study, thermostat, power-follower, and combined strategies were compared, and a 37% improvement in the fuel economy was implemented using the combined control strategy suggested in this study.

Development of Modeling Technique for Prediction of Driving Force and Kinetic Resistance of Agricultural Forklift (농업용 포크리프트의 구동력 및 운동저항 예측을 위한 모델링 기법 개발)

  • Jo, Jae-hyun;Kim, Jun-tae;Jeong, Jin-hyoung;Chang, Young-yoon;Park, Won-yeop;Lee, Sang-sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.299-305
    • /
    • 2019
  • This study was initiated to solve the difficulties of aged and female workers in agriculture society due to aging and demise of young people. In the case of the conventional elevated lift, the risk of exposure to uneven road or work environment, not the difficulty of professional qualification and operation, and the risk of exposure to the uneven road or working environment, were also studied based on previous researches so that women could easily and efficiently perform productive agriculture. First, the simulation was carried out through the prediction model of traction performance using the object of agricultural forklift, and the soil of the Kimhae city in Gyeongnam (34.125kPa, internal friction angle 35.294deg, external friction angle 13.620deg, Adhesion force 5.750 kPa, average cone index 0-15 cm cl, 1001.8 kPa). In the case of the forklift for simulation, the driving force and the kinetic resistance prediction modeling of the agricultural electric forklift are modeled. Based on this model, the motor control drive adopts the 1232E model, which is a drive dedicated to AC motor, and divides the two drivers into master and slave And the model for the simulation was designed to control motor drive, hydraulic drive, and various outputs on the main PCB. The simulation model is undergoing continuous simulation, modification and supplementation. Based on this research, we will continue research for development of safer and more efficient agricultural electric forklift.

Study of Driving Stability Performance of 2-Wheeled Independently Driven Vehicle Using Electric Corner Module (전동 통합 샤시를 이용한 2륜 독립구동 차량의 선회성능 향상에 관한 연구)

  • Park, Jinhyun;Choi, Jeonghun;Song, Hyeonwoo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.937-943
    • /
    • 2013
  • An independently driven electric corner module cannot be applied to an actual vehicle without some difficulty, because of vehicle safety problems in the case of malfunctions and degraded ride and handling performance owing to the increase in the unsprung mass. In this study, a simulator is developed to evaluate the vehicle driving performance in order to solve ride and handling problems. Component modeling of a small-sized electric vehicle with an independently driven electric corner module is performed using MATLAB/Simulink. The vehicle is modeled by using CarSim, which can be used to analyze the vehicle maneuvers with 27 DOFs. The control algorithm for the improvement of vehicle driving safety and ride and handling performance is validated by using the developed simulator.

Performance Evaluation of a Round Baler Attachable to Medium Agricultural Tractors (중형 트랙터용 원형베일러 성능평가)

  • Chang, Dong-Il;Chung, Sun-Ok;Cho, Byoung-Kwan;Cho, Nam-Hong
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.309-314
    • /
    • 2010
  • Bale is an operation of collecting livestock feed materials from field crop residue, and mechanization demand on the operation has been increased. Bailers imported from foreign countries such as Japan and European countries have been used, but those models showed improper performance in Korean situations. In recent years, a steel-roller type round baler attachable to medium size tractors(40 to 60 HP) for effective bale operation in Korea was developed. This study was conducted to evaluate field performance of the baler. For proper baling operation, engine speed was greater than 1,800rpm, average traction force and PTO torque were about 4kN and in a range of 380-671Nm, and maximum values were about 7kN and 3,000Nm, respectively. Performance evaluation tests for sudan grass, rice straw, and blue barley showed that field capacity was 0.59ha/h for blue barley and 0.99ha/h for sudan grass and rice straw. Bale weight, diameter, width, and bulk density were in ranges of 176.1~418.4kg, 1.07~1.12m, 1.02~1.04m, and 175.3~454.1kg/$m^3$. Noise sound level during the baling operation was 4dB greater than idle operation condition, which was considered to be ignorant.

Analysis on Driving Performance of Linear Induction Motor for Maglev System by Finite Element Method (유한요소법을 이용한 자기부상용 선형유도기의 운전 특성 분석법)

  • Kim, Ki-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4469-4474
    • /
    • 2014
  • This paper proposes a novel analysis method on the driving performance of LIM (linear induction motor) by FEM (finite element method). First, a linear model was converted with a rotation model to perform the dynamic analysis for a long time. Through the FEM model, the slip parameter for the control algorithm could be induced effectively. The LIM for the traction system was performed at a constant V/f in the region of constant torque, and a constant V and variable f in the region of constant power. Several slip characteristic curves according to the voltage and frequency were calculated by FEM in advance. The driving performance was then induced by interpolating the slip characteristic curves according to the load of the vehicle.

Effects of the Soil Moisture and Hardness on the Drawing Performance of a Two-Wheel Tractor. (토양수분과 경도가 동력경운기의 견인성능에 미치는 영향)

  • 박호석;차균도
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.25-32
    • /
    • 1977
  • This experiment was conducted in order to find out the drawing performance of a two-wheel tractor under different levels of the soil moisture and hardness, so as to obtain some basic data for improving their drawing performance. With fairly homogeneous soil, 5 levels of soil moisture contents (8, 13, 17, 20 and 23%) and 3 levels of soil hardness (0 , 2 and 4kg/$cm^2$) were selected for this experiment.The summerized results are as follows ;1. The draft force, on the hard soil (hardness ; 4kg/$cm^2$), had a distinct tendency to decrease with the increasing soil moisture. On the medium soil (hardness ; 2 kg/$cm^2$), and the soft soil (hardness ; 0kg$cm^2$), the draft force showed the highest when the moisture contents were within the range of 16-19%.But the maximum draft force, on the soft soil, was higher than that on the medium soil by 10 %. 2. The driving axle torque increased with increasing soil by 10 %. 3.The values of horizontal distance between the soil reaction point and axle shaft were within the range of 0~10cm , and it had the tendency to increase with the increasing soil moisture. Also, it s value was the largest on the hard soil and the smallest on the soft soil. 4.The tractive efficiency decreased with the increasing soil moisture. On the hard soil, the average value of tractive efficiency was higher than that on the medium soil by 19.0% and that on the soft soil was lower than that on the medium soil. 5.The traction ratio were within the range of 30 ~45%, and their changing tendency with respect to the soil moisture was similar to that in the case of the draft force. 6. The travel resistance ratio tended to increased with increasing soil moisture, and the highest value was found on the soft soil, and the lowest on the hard soil.

  • PDF

Modeling and Simulation for a Tractor Equipped with Hydro-Mechanical Transmission

  • Choi, Seok Hwan;Kim, Hyoung Jin;Ahn, Sung Hyun;Hong, Sung Hwa;Chai, Min Jae;Kwon, Oh Eun;Kim, Soo Chul;Kim, Yong Joo;Choi, Chang Hyun;Kim, Hyun Soo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • Purpose: A simulator for the design and performance evaluation of a tractor with a hydro-mechanical transmission (HMT) was developed. Methods: The HMT consists of a hydro-static unit (HSU), a swash plate control system, and a planetary gear. It was modeled considering the input/output relationship of the torque and speed, and efficiency of HSU. Furthermore, a dynamic model of a tractor was developed considering the traction force, running resistance, and PTO (power take off) output power, and a tractor performance simulator was developed in the co-simulation environment of AMESim and MATLAB/Simulink. Results: The behaviors of the design parameters of the HMT tractor in the working and driving modes were investigated as follows; For the stepwise change of the drawbar load in the working mode, the tractor and engine speeds were maintained at the desired values by the engine torque and HSU stroke control. In the driving mode, the tractor followed the desired speed through the control of the engine torque and HSU stroke. In this case, the engine operated near the OOL (optimal operating line) for the minimum fuel consumption within the shift range of HMT. Conclusions: A simulator for the HMT tractor was developed. The simulations were conducted under two operation conditions. It was found that the tractor speed and the engine speed are maintained at the desired values through the control of the engine torque and the HSU stroke.