• 제목/요약/키워드: tracking servo control

검색결과 268건 처리시간 0.024초

공작기계의 서보제어와 입력성형기법 (Input Shaping for Servo Control of Machine Tools)

  • 김병섭
    • 한국정밀공학회지
    • /
    • 제28권9호
    • /
    • pp.1011-1017
    • /
    • 2011
  • Servo control loops are a core part in the control architecture of machine tools. Servo control loops manage acceleration, velocity and position of all the axes in a machine tool based on commands. The performance of servo control loops sets the basis for quality of production paris and cycle time reduction. First, this paper presents a general control architecture of machine tools and several control schemes in literature, which can be applicable to machine tools control; including Zero Phase Error Tracking Control (ZPETC) and Cross Coupling Control (CCC). After that, modem control strategies to mitigate the problem of high speed machining are reviewed. In high speed machining, high accelerations excite the machine structure up to high frequencies, thereby exciting the structure's modes of vibration. These structural vibrations need to be damped if accurate positioning or trajectory following is required. Input shaping is an attractive option in dealing with structural vibrations. The advantages and drawbacks of using input shaping technique for machine tools are discussed in detail.

H$_\infty$ 서보제어를 이용한 무인 수중운동체의 심도 및 방향제어기 설계 (Depth and Course Controller Design of Autonomous Underwater Vehicles using H$_\infty$ Servo Control)

  • 김인수;정금영;양승윤;조상훈;정찬희;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.215-215
    • /
    • 2000
  • In this paper, depth and course controllers of autonomous underwater vehicles using H$_{\infty}$ servo control are proposed. An H$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H$_{\infty}$ servo problem is as follows: first, this problem is modified as an H$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The H$_{\infty}$ depth and course controllers ate designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed H$_{\infty}$ depth and course control systems.

  • PDF

압전 구동기를 이용한 미소절삭 공구대의 정밀위치제어 (Precision Position Control of a Fast Tool Servo Using Piezoelectric Actuators)

  • Song, J.W.;Kim, S.H.;Kim, H.S.
    • 한국정밀공학회지
    • /
    • 제14권10호
    • /
    • pp.50-57
    • /
    • 1997
  • A fast tool servo (FTS) for diamond turning improves machining accuracy by quickly compensating relative position errors between the cutter and the workpiece. Therefore, the FTS needs to have large band-width with good tracking performance. Serious hysteresis nonlinearity of PZT actuators used in the FTS, however, deteriorates fast tracking performance. Several types of feedforward hysteresis compensators and feedback controllers are tested to improve tracking performance. Through simulations and experiments, control structure which yields the smallest tracking error is selected. The maximum peak to peak error in tracking a sinusoidal waveform is reduced by one fifth compared to that of a regular PID controller.

  • PDF

피드포워드 마찰 보상을 이용한 서보 시스템의 위치 제어 (Position Control of Servo Systems Using Feed-Forward Friction Compensation)

  • 박민규;김한메;신종민;김종식
    • 대한기계학회논문집A
    • /
    • 제33권5호
    • /
    • pp.508-513
    • /
    • 2009
  • Friction is an important factor for precise position tracking control of servo systems. Servo systems with highly nonlinear friction are sensitive to the variation of operating condition. To overcome this problem, we use the LuGre friction model which can consider dynamic characteristics of friction. The LuGre friction model is used as a feed-forward compensator to improve tracking performance of servo systems. The parameters of the LuGre friction model are identified through experiments. The experimental result shows that the tracking performance of servo systems with higherly nonlinear friction can be improved by using feed-forward friction compensation.

2차원 반복 학습 신경망을 이용한 전기.유압 서보시스템의 제어 (Control of an Electro-hydraulic Servosystem Using Neural Network with 2-Dimensional Iterative Learning Rule)

  • 곽동훈;이진걸
    • 유공압시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 2004
  • This paper addresses an approximation and tracking control of recurrent neural networks(RNN) using two-dimensional iterative learning algorithm for an electro-hydraulic servo system. And two dimensional learning rule is driven in the discrete system which consists of nonlinear output function and linear input. In order to control the trajectory of position, two RNN's with the same network architecture were used. Simulation results show that two RNN's using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two same RNN was very effective to control trajectory tracking of electro-hydraulic servo system.

  • PDF

$H_{\infty}$ 2 자유도 제어기를 이용한 CNC 시스템의 가공 정밀도 향상에 관한 연구 (A study on the improvement of cutting precision of CNC system using $H_{\infty}$ 2-degree-of-freedom controller)

  • 최성규;최병욱;현용탁;강성귀;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1040-1043
    • /
    • 1996
  • The accuracy of the servo control in CNC system has a great influence on the duality of machine product. Tracking performance of the servo control is deteriorated mainly by the time delay of the servo system and the inertia of the work table or bed. Contouring errors occur in every interpolation steps by the effect of the tracking performance. In this paper, $H_{\infty}$ two-degree-of-freedom(TDF) controller is designed for improvement to improve the tracking performance. The designed controller is applied 3-axis machining center model and the cutting accuracy is simulated in case of corner cutting, circular and involute interpolation. Simulation results show that $H_{\infty}$ TDF controller designed in this paper has a good effect to improve tracking performance in CNC system.

  • PDF

광디스크 드라이브의 개선된 트래킹 서보 시스템 (An Improved Tracking Servo System in Optical Disk Drives)

  • 이태규;정동슬;정정주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.137-139
    • /
    • 2007
  • In optical disk drives, a conventional control method in the presence of surface defect is holding the previous tracking control command. It is known that the method has a long settling time. This paper proposes a new control method which reduces the settling time. An optical head generally has coupled dynamics between focusing and tracking servo system. We present how to compensate the coupled dynamics so that reduced settling time is achieved. It is verified by experiments that the proposed method brings an improved performance in the presence of surface defect as well as in the normal operating condition.

  • PDF

반복 학습 제어를 이용한 NFR 디스크 드라이브의 2단 서보 시스템 (A Dual-Stage Servo System for an NFR Disk Drive using Iterative Learning Control)

  • 문정호;도태용
    • 제어로봇시스템학회논문지
    • /
    • 제9권4호
    • /
    • pp.277-283
    • /
    • 2003
  • Recently, near-field recording (NFR) disk drive schemes have been proposed with a view to increasing recording densities of hard disk drives. Compared with hard disk drives. NFR disk drives have narrower track pitches and are exposed to more severe periodic disturbances resulting from eccentric rotation of the disk. It is difficult to meet servo system design specifications for NFR disk drives with conventional VCM actuators in that the servo system for an NFR disk drive generally requires a feater gain and higher bandwidth. To tackle the problem various dual-stage actuator systems composed of a microactuator mounted on top of a conventional VCM actuator have been proposed. This article deals with the problem of designing a tracking servo system far an NFR disk drive adopting a dual-stage actuator. We summarize design constraints pertaining to the dual-stage servo system and present a new servo scheme using iterative teaming control. We design feedback compensators and an iterative teaming controller for a target plant and verify the validity of the proposed control scheme through a computer simulation.

통신지연을 갖는 CNC 서보 시스템에 대한 모서리 윤곽정확도 향상 (Improvement of Corner Contouring Accuracy of CNC Servo Systems with Communication Delay)

  • 임종협;지성철
    • 한국정밀공학회지
    • /
    • 제28권2호
    • /
    • pp.168-175
    • /
    • 2011
  • Contouring accuracy of CNC machine tools is very important for high-speed and high-precision machining. In particular, large contour error may occur during corner tracking. In order to reduce the corner contouring error, acceleration and deceleration control or tool-path planning methods have been suggested. However, they do not directly control the corner contouring error. In the meantime, network servo systems are widely used because of their easiness of building and cost effectiveness. Communication latency between the master controller and servo drives, however, may deteriorate contouring accuracy especially during corner tracking. This paper proposes a control strategy that can accurately calculate and directly control the corner contouring error. A prediction control is combined with the above control to cope with communication latency. The proposed control method is evaluated through computer simulation and experiments. The results show its validity and usefulness.

전기-정유압 구동기의 확장 상태 관측기 기반 비선형 서보 제어 (Extended-State-Observer-Based Nonlinear Servo Control of An Electro-Hydrostatic Actuator)

  • 전기호;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.61-70
    • /
    • 2017
  • In this study, an extended-state-observer (ESO) based non-linear servo control is introduced for an electro-hydrostatic actuator (EHA). Almost hydraulic systems not only are highly non-linear system that has mismatched uncertainties and external disturbances, but also can not measure some states. ESO that only use an output signal can be used to compensate these uncertainties and estimate unmeasurable states. To improve the position tracking performance, the barrier Lyapunov function (BLF) that can guarantee an output tolerance is introduced for the position tracking error signal of back stepping control procedures. Finally, the proposed servo control is compared with the proportional-integral (PI) control.