• Title/Summary/Keyword: tracking model

Search Result 2,279, Processing Time 0.028 seconds

A Study on a Feature-based Multiple Objects Tracking System (특징 기반 다중 물체 추적 시스템에 관한 연구)

  • Lee, Sang-Wook;Seol, Sung-Wook;Nam, Ki-Gon;Kwon, Tae-Ha
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.95-101
    • /
    • 1999
  • In this paper, we propose an adaptive method of tracking multiple moving objects using contour and features in surrounding conditions. We use an adaptive background model for robust processing in surrounding conditions. Object segmentation model detects pixels thresholded from local difference image between background and current image and extracts connected regions. Data association problem is solved by using feature extraction and object recognition model in searching window. We use Kalman filters for real-time tracking. The results of simulation show that the proposed method is good for tracking multiple moving objects in highway image sequences.

  • PDF

The Sensory-Motor Fusion System for Object Tracking (이동 물체를 추적하기 위한 감각 운동 융합 시스템 설계)

  • Lee, Sang-Hee;Wee, Jae-Woo;Lee, Chong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.181-187
    • /
    • 2003
  • For the moving objects with environmental sensors such as object tracking moving robot with audio and video sensors, environmental information acquired from sensors keep changing according to movements of objects. In such case, due to lack of adaptability and system complexity, conventional control schemes show limitations on control performance, and therefore, sensory-motor systems, which can intuitively respond to various types of environmental information, are desirable. And also, to improve the system robustness, it is desirable to fuse more than two types of sensory information simultaneously. In this paper, based on Braitenberg's model, we propose a sensory-motor based fusion system, which can trace the moving objects adaptively to environmental changes. With the nature of direct connecting structure, sensory-motor based fusion system can control each motor simultaneously, and the neural networks are used to fuse information from various types of sensors. And also, even if the system receives noisy information from one sensor, the system still robustly works with information from other sensors which compensates the noisy information through sensor fusion. In order to examine the performance, sensory-motor based fusion model is applied to object-tracking four-foot robot equipped with audio and video sensors. The experimental results show that the sensory-motor based fusion system can tract moving objects robustly with simpler control mechanism than model-based control approaches.

Stereo Images-Based Real-time Object Tracking Using Active Feature Model (능동 특징점 모델을 이용한 스테레오 영상 기반의 실시간 객체 추적)

  • Park, Min-Gyu;Jang, Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.16B no.2
    • /
    • pp.109-116
    • /
    • 2009
  • In this thesis, an object tracking method based on the active feature model and the optical flow in stereo images is proposed. We acquired the translation information of object of interest and the features of object by utilizing the geometric information and depth of stereo images. Tracking performance is improved for the occlude object with this information by predicting the movement information of features of the occlude object. Rigid and non-rigid objects are experimented. From the result of experiment, the OOI can be real-time tracked from complicate back ground. Besides, we got the improved result of object tracking in any occlusion state, no matter what it is rigid or non-rigid object.

Real-Time Tomato Instance Tracking Algorithm by using Deep Learning and Probability Model (딥러닝과 확률모델을 이용한 실시간 토마토 개체 추적 알고리즘)

  • Ko, KwangEun;Park, Hyun Ji;Jang, In Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a smart farm technology is drawing attention as an alternative to the decline of farm labor population problems due to the aging society. Especially, there is an increasing demand for automatic harvesting system that can be commercialized in the market. Pre-harvest crop detection is the most important issue for the harvesting robot system in a real-world environment. In this paper, we proposed a real-time tomato instance tracking algorithm by using deep learning and probability models. In general, It is hard to keep track of the same tomato instance between successive frames, because the tomato growing environment is disturbed by the change of lighting condition and a background clutter without a stochastic approach. Therefore, this work suggests that individual tomato object detection for each frame is conducted by YOLOv3 model, and the continuous instance tracking between frames is performed by Kalman filter and probability model. We have verified the performance of the proposed method, an experiment was shown a good result in real-world test data.

2D Planar Object Tracking using Improved Chamfer Matching Likelihood (개선된 챔퍼매칭 우도기반 2차원 평면 객체 추적)

  • Oh, Chi-Min;Jeong, Mun-Ho;You, Bum-Jae;Lee, Chil-Woo
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.37-46
    • /
    • 2010
  • In this paper we have presented a two dimensional model based tracking system using improved chamfer matching. Conventional chamfer matching could not calculate similarity well between the object and image when there is very cluttered background. Then we have improved chamfer matching to calculate similarity well even in very cluttered background with edge and corner feature points. Improved chamfer matching is used as likelihood function of particle filter which tracks the geometric object. Geometric model which uses edge and corner feature points, is a discriminant descriptor in color changes. Particle Filter is more non-linear tracking system than Kalman Filter. Then the presented method uses geometric model, particle filter and improved chamfer matching for tracking object in complex environment. In experimental result, the robustness of our system is proved by comparing other methods.

RGB Camera-based Real-time 21 DoF Hand Pose Tracking (RGB 카메라 기반 실시간 21 DoF 손 추적)

  • Choi, Junyeong;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.942-956
    • /
    • 2014
  • This paper proposes a real-time hand pose tracking method using a monocular RGB camera. Hand tracking has high ambiguity since a hand has a number of degrees of freedom. Thus, to reduce the ambiguity the proposed method adopts the step-by-step estimation scheme: a palm pose estimation, a finger yaw motion estimation, and a finger pitch motion estimation, which are performed in consecutive order. Assuming a hand to be a plane, the proposed method utilizes a planar hand model, which facilitates a hand model regeneration. The hand model regeneration modifies the hand model to fit a current user's hand, and improves robustness and accuracy of the tracking results. The proposed method can work in real-time and does not require GPU-based processing. Thus, it can be applied to various platforms including mobile devices such as Google Glass. The effectiveness and performance of the proposed method will be verified through various experiments.

Measuring of Effectiveness of Tracking Based Accident Detection Algorithm Using Gaussian Mixture Model (가우시안 배경혼합모델을 이용한 Tracking기반 사고검지 알고리즘의 적용 및 평가)

  • Oh, Ju-Taek;Min, Jun-Young
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.77-85
    • /
    • 2012
  • Most of Automatic Accident Detection Algorithm has a problem of detecting an accident as traffic congestion. Actually, center's managers deal with accidents depend on watching CCTV or accident report by drivers even though they run the Automatic Accident Detection system. It is because of the system's detecting errors such as detecting non-accidents as accidents, and it makes decreasing in the system's overall reliability. It means that Automatic Accident Detection Algorithm should not only have high detection probability but also have low false alarm probability, and it has to detect accurate accident spot. The study tries to verify and evaluate the effectiveness of using Gaussian Mixture Model and individual vehicle tracking to adapt Accident Detection Algorithm to Center Management System by measuring accident detection probability and false alarm probability's frequency in the real accident.

DESIGN OF A LOAD FOLLOWING CONTROLLER FOR APR+ NUCLEAR PLANTS

  • Lee, Sim-Won;Kim, Jae-Hwan;Na, Man-Gyun;Kim, Dong-Su;Yu, Keuk-Jong;Kim, Han-Gon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.369-378
    • /
    • 2012
  • A load-following operation in APR+ nuclear plants is necessary to reduce the need to adjust the boric acid concentration and to efficiently control the control rods for flexible operation. In particular, a disproportion in the axial flux distribution, which is normally caused by a load-following operation in a reactor core, causes xenon oscillation because the absorption cross-section of xenon is extremely large and its effects in a reactor are delayed by the iodine precursor. A model predictive control (MPC) method was used to design an automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control for APR+ nuclear plants. Some tracking controllers employ the current tracking command only. On the other hand, the MPC can achieve better tracking performance because it considers future commands in addition to the current tracking command. The basic concept of the MPC is to solve an optimization problem for generating finite future control inputs at the current time and to implement as the current control input only the first control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The support vector regression (SVR) model that is used widely for function approximation problems is used to predict the future outputs based on previous inputs and outputs. In addition, a genetic algorithm is employed to minimize the objective function of a MPC control algorithm with multiple constraints. The power level and ASI are controlled by regulating the control banks and part-strength control banks together with an automatic adjustment of the boric acid concentration. The 3-dimensional MASTER code, which models APR+ nuclear plants, is interfaced to the proposed controller to confirm the performance of the controlling reactor power level and ASI. Numerical simulations showed that the proposed controller exhibits very fast tracking responses.

Nonlinear Model-Based Robust Control of a Nuclear Reactor Using Adaptive PIF Gains and Variable Structure Controller (적응 PIF Gain 및 가변구조 제어기를 사용한 비선형 모델에 의한 원자로의 Robust Control)

  • Park, Moon-Ghu;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.110-124
    • /
    • 1993
  • A Nonlinear model-based Hybrid Controller (NHC) is developed which consists of the adaptive proportional-integral-feedforward (PIF) gains and variable structure controller. The controller has the robustness against modeling uncertainty and is applied to the trajectory tracking control of single-input, single-output nonlinear systems. The essence of the scheme is to divide the control into four different terms. Namely, the adaptive P-I-F gains and variable structure controller are used to accomplish the specific control actions by each terms. The robustness of the controller is guaranteed by the feedback of estimated uncertainty and the performance specification given by the adaptation of PIF gains using the second method of Lyapunov. The variable structure controller is incorporated to regulate the initial peak of the tracking error during the parameter adaptation is not settled yet. The newly developed NHC method is applied to the power tracking control of a nuclear reactor and the simulation results show great improvement in tracking performance compared with the conventional model-based control methods.

  • PDF

The Optimal Tracking Error of Active Stock Fund by Smart Beta Strategy (스마트 베타 전략에 따른 액티브 주식형 펀드의 최적 추적오차)

  • Jae-Hyun Lee
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.4
    • /
    • pp.163-175
    • /
    • 2022
  • Purpose - This study introduces a methodology for finding the optimal tracking error of active stock funds. Tracking error is commonly used in risk budgeting techniques as a concept of cost for alpha creation. Design/methodology/approach - This study uses a post-optimal smart beta portfolio that maximizes alpha under the given tracking error constraint. Findings - As a result of the analysis, the smart beta strategy that maximized alpha under the constraint of 0.15% daily tracking error shows the highest IR. This means the maximum theoretically achievable efficiency. In this regard, a fixed-effect panel regression analysis is conducted to evaluate the active efficiency of domestic stock funds. In addition to control variables based on previous studies, the effect of tracking error on alpha is analyzed. The alpha used in this model is calculated using the smart beta portfolio according to the size of the constraint of the tracking error as a benchmark. Contrary to theoretical estimates, in Korea, the alpha performance is maximized under a daily tracking error of 0.1%. This indicates that the active efficiency of domestic equity funds is lower than the theoretical maximum. Research implications or Originality - Based on this study, it is expected that it can be used for active risk management of pension funds and performance evaluation of active strategies.