• Title/Summary/Keyword: tracking model

Search Result 2,279, Processing Time 0.037 seconds

Target Acquisition and Tracking of Tracking Radar (추적레이다의 표적 탐지 및 추적 기술 동향)

  • Shin, Han-Seop;Choi, Jee-Hwan;Kim, Dae-Oh;Kim, Tae-Hyung
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • In this paper, we described the model of noise, target for tracking radar and range tracking, angle tracking, and Doppler frequency tracking for target acquisition and tracking. Target signal as well as the noise signal is modeled as random process varying with elapsed time. This paper addresses three areas of radar target tracking: range tracking, angle tracking, and Doppler frequency tracking. In general, range tracking is prerequisite to and inherent in both angle and Doppler frequency tracking systems. First, we introduced the several range tracking and described techniques for achieving range tracking. Second, we described the radar angle tracking techniques including conical scan, sequential lobing, and monopulse. Finally, we presented concepts and techniques for Doppler frequency tracking for several radar types.

  • PDF

Application of Tracking Signal to the Markowitz Portfolio Selection Model to Improve Stock Selection Ability by Overcoming Estimation Error (추적 신호를 적용한 마코위츠 포트폴리오 선정 모형의 종목 선정 능력 향상에 관한 연구)

  • Kim, Younghyun;Kim, Hongseon;Kim, Seongmoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.3
    • /
    • pp.1-21
    • /
    • 2016
  • The Markowitz portfolio selection model uses estimators to deduce input parameters. However, the estimation errors of input parameters negatively influence the performance of portfolios. Therefore, this model cannot be reliably applied to real-world investments. To overcome this problem, we suggest an algorithm that can exclude stocks with large estimation error from the portfolio by applying a tracking signal to the Markowitz portfolio selection model. By calculating the tracking signal of each stock, we can monitor whether unexpected departures occur on the outcomes of the forecasts on rate of returns. Thereafter, unreliable stocks are removed. By using this approach, portfolios can comprise relatively reliable stocks that have comparatively small estimation errors. To evaluate the performance of the proposed approach, a 10-year investment experiment was conducted using historical stock returns data from 6 different stock markets around the world. Performance was assessed and compared by the Markowitz portfolio selection model with additional constraints and other benchmarks such as minimum variance portfolio and the index of each stock market. Results showed that a portfolio using the proposed approach exhibited a better Sharpe ratio and rate of return than other benchmarks.

A Study on Tracking Control of an Industrial Overhead Crane Using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 산업용 천정크레인의 추종제어에 관한 연구)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1022-1032
    • /
    • 2000
  • We propose a sliding mode controller tracking the states of a time-varying reference model. The reference model generates the desired trajectories of the states, and the sliding mode controller regulates robustly the errors between the desired states and the measured states. We apply this controller to the overhead crane. Its reference model generates the trajectories of the damped-out swing angle and the swing angular velocity to suppress the swinging motion caused by the acceleration and the deceleration of crane transportation. Also, this model generates the desired trajectories of the position and velocity of the crane. The crane model is identified from the experimental data using an orthogonal function. Kalman filtering is applied to estimate the crane states. The designed controller is simulated on a computer and is tested through a 2-ton industrial overhead crane using the vector-controlled servo motor system. It is verified that, from the simulated and experimental results, the sliding mode controller tracking a time-varying reference model works well.

  • PDF

Human Tracking using Multiple-Camera-Based Global Color Model in Intelligent Space

  • Jin Tae-Seok;Hashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 2006
  • We propose an global color model based method for tracking motions of multiple human using a networked multiple-camera system in intelligent space as a human-robot coexistent system. An intelligent space is a space where many intelligent devices, such as computers and sensors(color CCD cameras for example), are distributed. Human beings can be a part of intelligent space as well. One of the main goals of intelligent space is to assist humans and to do different services for them. In order to be capable of doing that, intelligent space must be able to do different human related tasks. One of them is to identify and track multiple objects seamlessly. In the environment where many camera modules are distributed on network, it is important to identify object in order to track it, because different cameras may be needed as object moves throughout the space and intelligent space should determine the appropriate one. This paper describes appearance based unknown object tracking with the distributed vision system in intelligent space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

Target Image Exchange Model for Object Tracking Based on Siamese Network (샴 네트워크 기반 객체 추적을 위한 표적 이미지 교환 모델)

  • Park, Sung-Jun;Kim, Gyu-Min;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.389-395
    • /
    • 2021
  • In this paper, we propose a target image exchange model to improve performance of the object tracking algorithm based on a Siamese network. The object tracking algorithm based on the Siamese network tracks the object by finding the most similar part in the search image using only the target image specified in the first frame of the sequence. Since only the object of the first frame and the search image compare similarity, if tracking fails once, errors accumulate and drift in a part other than the tracked object occurs. Therefore, by designing a CNN(Convolutional Neural Network) based model, we check whether the tracking is progressing well, and the target image exchange timing is defined by using the score output from the Siamese network-based object tracking algorithm. The proposed model is evaluated the performance using the VOT-2018 dataset, and finally achieved an accuracy of 0.611 and a robustness of 22.816.

Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID (계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템)

  • Lee, Sang-Hyun;Yang, Seong-Hun;Oh, Seung-Jin;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object's departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization. In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos. The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information. The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value. In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields' dataset related to intelligent video analysis.

Tracking a constant speed maneuvering target using IMM method

  • Lee, Jong-hyuk;Kim, Kyung-youn;Ko, Han-seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.484-487
    • /
    • 1995
  • An interacting multiple model (IMM) approach which merges two hypotheses for the situations of constant speed and constant acceleration model is considered for the tracking of maneuvering target. The inflexibility of uncertainty which lies in the kinematic constraint (KC) represented by pseudomeasurement noise variance is compensated by the mixing of estimates from two model Kalman tracker: one with KC and one without KC. The numerically simulated tracking performance is compared for the "great circular like turning" trajectory maneuver by the single model tracker with constant speed KC and two model tracker which is developed in this paper.his paper.

  • PDF

Static Output Feedback Model Predictive Tracking Control for Linear Systems with Uncertainty

  • Kim, San-Gun;Lee, Sang-Moon;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.292-295
    • /
    • 2003
  • In this paper, we present static output feedback model predictive tracking control for linear system with uncertainty. The proposed control law is based on integral action form to provide zero o��set for constant command signals and the closed loop stability is guaranteed under linear matrix inequality conditions on the terminal weighting matrix using the decreasing monotonicity property of the performance index. Through simulation examples, we illustrate that the proposed schemes can be appropriate tracking controllers for uncertain system.

  • PDF

Adaptive Bayesian Object Tracking with Histograms of Dense Local Image Descriptors

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.104-110
    • /
    • 2016
  • Dense local image descriptors like SIFT are fruitful for capturing salient information about image, shown to be successful in various image-related tasks when formed in bag-of-words representation (i.e., histograms). In this paper we consider to utilize these dense local descriptors in the object tracking problem. A notable aspect of our tracker is that instead of adopting a point estimate for the target model, we account for uncertainty in data noise and model incompleteness by maintaining a distribution over plausible candidate models within the Bayesian framework. The target model is also updated adaptively by the principled Bayesian posterior inference, which admits a closed form within our Dirichlet prior modeling. With empirical evaluations on some video datasets, the proposed method is shown to yield more accurate tracking than baseline histogram-based trackers with the same types of features, often being superior to the appearance-based (visual) trackers.

Model-Based Control System Design and Sliding Mode Control of Stewart Platform Manipulator (운동방정식을 기저로 한 스튜워트 플랫폼 운동장치의 제어시스템 설계 및 슬라이딩 모드제어)

  • Lee, Chong-Won;Kim, Nag-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.903-911
    • /
    • 1999
  • A high speed tracking control system for 6-6 Stewart platform manipulator is designed for performing the model based joint-axis sliding mode control. Because of the complex dynamics and kinematics of the Stewart platform manipulator, two computer systems, consisting of a PC and a DSP, are adopted, so that real time tasks are run in synchronous and asynchronous modes. It is experimentally proven that the proposed control system makes the convenience in implementation of model based tracking control, so that it can achieve effective tracking control under relatively high speed and additional payload conditions.