• Title/Summary/Keyword: tracking error

Search Result 1,499, Processing Time 0.027 seconds

Performance of PN Code Synchronization with Extended Kalman Filter for a Direct-Sequence Spread-Spectrum System (직접시퀀스 확산대역 시스템을 위한 Extended Kalman Filter 기반의 PN 부호 동기화 성능)

  • Kim, Jin-Young;Yang, Jae-Soo
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.3
    • /
    • pp.107-110
    • /
    • 2009
  • In this paper, a PN code tracking loop with extended Kalman filter (EKF) is proposed for a direct-sequence spread-spectrum. EKF is used to estimate amplitude and delay in a multipath. fading channel. It is shown that tracking error performance is significantly improved by EKF compared with a conventional tracking loop.

  • PDF

Motion planning of a robot manipulator for conveyor tracking (컨베이어 추적을 위한 로보트 매니퓰레이터의 동작 계획)

  • 박태형;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.154-159
    • /
    • 1989
  • This paper presents a motion planning algorithm for conveyor tracking. We formulate the problem as the linear quadratic tracking problem in optimal control theory and solve it through dynamic programming. In the proposed algorithm, the steady-state tracking error is eliminated completely, and the joint torque, velocity, acceleration, and jerks are considered as some constraints. Numerical examples are then presented to demonstrate the utility of the proposed motion planning algorithm.

  • PDF

Development of landmark tracking system (표식 인식 시스템의 개발)

  • 권승만;이상룡
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.642-645
    • /
    • 1991
  • This paper presents the results of research on hardware and software of the landmark tracking system to the positions of moving robot in real time. The landmark tracking system is composed of CCD camera, landmark, strobo system and image processing board. The algorithm calculates the position and direction by using the coordinate transformation fomula after calculating the centroid and rotation angle of landmark at fixed position using the image data. The experiment is performed with landmark tracking system is loaded on xyz-table. XYZ-table is used for identifying the true position in our experiment. The results shows that this system has high performance with maxima error of .+-.1 pixels.

  • PDF

Tracking Control of a DC Servomotor Using a Continuous VSS Control (연속 가변 구조 제어를 이용한 직류 전동기의 추적 제어)

  • 이정훈;고종선;이종준;이주장;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.607-614
    • /
    • 1992
  • A continuous variable structure system control for a DC servomotor tracking controller is proposed to alleviate the chattering problems. The stability property of the proposed algorithm is analyzed in detail. The prescribed tracking error is guaranteed under load variations based on the stability analysis. Through the comparative simulations between the proposed algorithm and the conventional VSS, the effectiveness of the proposed algorithm is proved.

  • PDF

Feedback Error Learning and $H^{\infty}$-Control for Motor Control

  • Wongsura, Sirisak;Kongprawechnon, Waree;Phoojaruenchanachai, Suthee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1981-1986
    • /
    • 2004
  • In this study, the basic motor control system had been investigated. The controller for this study consists of two main parts, a feedforward controller part and a feedback controller part. Each part will deals with different control problems. The feedback controller deals with robustness and stability, while the feedforward controller deals with response speed. The feedforward controller, used to solve the tracking control problem, is adaptable. To make such a tracking perfect, an adaptive law based on Feedback Error Learning (FEL) is designed so that the feedforward controller becomes an inverse system of the controlled plant. The novelty of FEL method lies in its use of feedback error as a teaching signal for learning the inverse model. The theory in $H^{\infty}$-Control is selected to be applied in the feedback part to guarantee the stability and solve the robust stabilization problems. The simulation of each individual part and the integrated one are taken to clarify the study.

  • PDF

Autonomous Tracking Control of Intelligent Vehicle using GPS Information (GPS 정보를 이용한 지능형 차량의 자율 경로추적 제어)

  • Chung, Byeung-Mook;Seok, Jin-Woo;Cho, Che-Seung;Lee, Jae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.58-66
    • /
    • 2008
  • In the development of intelligent vehicles, path tracking of unmanned vehicle is a basis of autonomous driving and automatic navigation. It is very important to find the exact position of a vehicle for the path tracking, and it is possible to get the position information from GPS. However the information of GPS is not the current position but the past position because a vehicle is moving and GPS has a time delay. In this paper, therefore, the moving distance of a vehicle is estimated using a direction sensor and a velocity sensor to compensate the position error of GPS. In the steering control, optimal fuzzy rules for the path tracking can be found through the simulation of Simulink. Real driving experiments show the fuzzy rules are good for the steering control and the position error of GPS is well compensated by the proposed estimation method.

Efficient Mobile Robot Localization through Position Tracking Bias Mitigation for the High Accurate Geo-location System (고정밀 위치인식 시스템에서의 위치 추적편이 완화를 통한 이동 로봇의 효율적 위치 추정)

  • Kim, Gon-Woo;Lee, Sang-Moo;Yim, Chung-Hieog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.752-759
    • /
    • 2008
  • In this paper, we propose a high accurate geo-location system based on a single base station, where its location is obtained by Time-of-Arrival(ToA) and Direction-of-Arrival(DoA) of the radio signal. For estimating accurate ToA and DoA information, a MUltiple SIgnal Classification(MUSIC) is adopted. However, the estimation of ToA and DoA using MUSIC algorithm is a time-consuming process. The position tracking bias is occurred by the time delay caused by the estimation process. In order to mitigate the bias error, we propose the estimation method of the position tracking bias and compensate the location error produced by the time delay using the position tracking bias mitigation. For accurate self-localization of mobile robot, the Unscented Kalman Filter(UKF) with position tracking bias is applied. The simulation results show the efficiency and accuracy of the proposed geo-location system and the enhanced performance when the Unscented Kalman Filter is adopted for mobile robot application.

Code Tracking Scheme for Cosine Phased BOC Signals Based on Combination of Sub-correlations (부상관함수 결합에 기반한 Cosine 위상 BOC 코드 추적 기법)

  • Lee, Young-Po;Kim, Hyun-Soo;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9C
    • /
    • pp.581-588
    • /
    • 2011
  • In this paper, we propose a novel unambiguous code tracking scheme for cosine phased binary offset carrier (BOC) signals. We first obtain the sub-correlation functions composing the BOC autocorrelation function, and then, re-combine the sub-correlation functions generating a correlation function with no side-peak. Finally, by using the correlation function with no side-peak in the delay lock loop, the proposed scheme performs unambiguous signal tracking. Numerical results demonstrate that the proposed scheme provides a performance improvement over the conventional unambiguous scheme in terms of the tracking error standard deviation (TESD).

Test of UAV Tracking Antenna System Using Kalman Filter Based on GPS Velocity and Acceleration (GPS 속도와 가속도 기반의 칼만 필터를 이용한 무인항공기 추적 안테나 시스템의 시험)

  • Seo, Young-Jun;Lee, Dae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.883-888
    • /
    • 2011
  • The UAV tracking antenna system based on GPS has a characteristic of update of position information which can occurs a position error. To reduce the position error, UAV tracking antenna system separates period of GPS update-rate and predicts the position of UAV using divided time points. These process improves the tracking performance of UAV. To predict the position of UAV by divided time points, we used a linear kalman filter based on the velocity and acceleration. Using this system, we measured velocity and acceleration according to the change of position. Finally, we can predict the change of position on divided time points.

T-joint Laser Welding of Circular and Square Pipes Using the Vision Tracking System (용접선 추적 비전장치를 이용한 원형-사각 파이프의 T형 조인트 레이저용접)

  • Son, Yeong-Il;Park, Gi-Yeong;Lee, Gyeong-Don
    • Laser Solutions
    • /
    • v.12 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • Because of its fast and precise welding performance, laser welding is becoming a new excellent welding method. However, the precise focusing and robust seam tracking are required to apply laser welding to the practical fields. In order to laser weld a type of T joint like a circular pipe on a square pipe, which could be met in the three dimensional structure such as an aluminum space frame, a visual sensor system was developed for automation of focusing and seam tracking. The developed sensor system consists of a digital CCD camera, a structured laser, and a vision processor. It is moved and positioned by a 2-axis motorized stage, which is attached to a 6 axis robot manipulator with a laser welding head. After stripe-type structured laser illuminates a target surface, images are captured through the digital CCD camera. From the image, seam error and defocusing error are calculated using image processing algorithms which includes efficient techniques handling continuously changed image patterns. These errors are corrected by the stage off-line during welding or teaching. Laser welding of a circular pipe on a square pipe was successful with the vision tracking system by reducing the path positioning and de focusing errors due to the robot teaching or a geometrical variation of specimens and jig holding.

  • PDF