• Title/Summary/Keyword: tracking antenna

Search Result 237, Processing Time 0.023 seconds

Stabilization Loop Design Method on Dynamic Platform

  • Kwon, Young-Shin;Kim, Doh-Hyun;Kim, Lee-Han;Hwang, Hong-Yeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.156.5-156
    • /
    • 2001
  • Stabilized tracking platform in a missile consisting of a flat planar antenna, pitch/yaw gimbals, gear trains, and current controlled DC drive motors for pitch and yaw gimbal must have a capability to track a target as an inertial sensor in the presence of missile body motion such as maneuvering and vibration. Because of this reason, tracking a target from dynamic platform requires a servo architecture that includes a outer tracking loop(position loop) and inner rate loop that stabilizes the line of sight(LOS). This paper presents a gimbaled platform model including nonlinear phenomena due to viscous and Coulomb friction based on experimental data and torque equilibrium equation, the design concept for the inner tacholoop having P controller structure ...

  • PDF

A Repeater-Assisted Indoor GPS Signal Acquisition and Tracking (중계기 도움방식의 실내 GPS 신호 획득 및 추적)

  • Song, Ha-Yeong;Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.963-968
    • /
    • 2008
  • A new method to deal with GPS indoor positioning by means of time synchronized switching GPS repeater has been developed by authors[1]. But the developed indoor positioning system has problems. Therefore, we proposed a method for indoor positioning using GNSS Repeater-Assisted. To solve the 3-dimensional user's position, the 4 or more retransmission antennas are needed in the previously proposed methods. If a GPS repeater periodically transmits the signal like as pseudollite, the information for assisting an acquisition and tracking can be informed to receiver. Then, the user position can be calculated using the induced weak signal. The advantage of the proposed algorithm is use of only 1 re-transmission antenna because the re-transmitted signal are not used for positioning but used for assisting an acquisition and tracking weak signals induced indoor. We analyze the propose algorithms through the experiment and performed the test of feasibility.

Quantification of Angular Prediction Accuracy for Phased Array Radar Tracking (위상배열레이더 추적 각도예측의 정확도 정량화)

  • Hong, Sun-Mog
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.74-79
    • /
    • 2012
  • Scalar quantification of the angular prediction error covariance matrix is considered for characterizing tracking performances in phased array radar tracking. Specifically, the maximum eigenvalue and the trace of the covariance matrix are examined in terms of consistency in parameterizing the probability of detection, taking antenna beam-pointing losses into account, and it is shown numerically that the latter is more consistent.

Current Status of KASI Solar Radio Observing System

  • Bong, Su-Chan;Hwangbo, Jung-Eun;Park, Sung-Hong;Park, Jongyeob;Park, Young Deuk;Lee, Dae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2013
  • Korea Astnonomy and Space Science Institute (KASI) operates two solar radio observing facilities, the Korean station of the e-CALLISTO and the Korean Solar Radio Burst Locator (KSRBL). The e-CALLISTO station had suffered from tracking problem for past several years. Since 2011, KASI has developed a new tracking system, and recently the antenna has regained the its sun-tracking capability and full day-time coverage. The KSRBL also suffered from the control computer breakdown last year. After one year of operational gap, the KSRBL restored its normal daily observation. We also expanded the data server storage capacity, to store the full original data of 25 ms integration time and 0.25 MHz frequency resolution, amounting to about 80 GB per day.

  • PDF

Monopulse L-Band Dipole Feed For The Satellite Tracking (위성 추적용 Monopulse L-Band Dipole Feed부의 제작)

  • Cheon, B.J.;Hong, S.Y.;Lee, J.H.;Ra, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.82-85
    • /
    • 1987
  • Electromagnetic waves from the satellite may be utilized to direct the tracking antenna toward the satellite. We design and fabricate the feed appropriate to the monopulse tracking technique which derive angle-error information on the basis of a single pulse. The feed consists of five cavity-backed turnstile elements mounted on a common ground plane. The turnstile dipole are connected to a set of five quadrature hybrids which convert the dual linear polarization into dual circular polarization. The five feed outputs are then processed in the monopulse comparator which is constructed in microstrip for compactness.

  • PDF

Analysis of Performance of Digital Retrodirective Antenna Technology in High-Speed Rail (고속 철도 환경에서의 디지털 역지향성 안테나 기술 성능 분석)

  • Bok, Junyeong;Lee, Seung Hwan;Shin, Dong Jin;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1264-1271
    • /
    • 2012
  • Fast tracking is important for high-speed data transmission in high-speed mobile environment such as high speed rail and vehicular. Digital retrodirective array antenna is possible to do automatically beam tracking because it can control the phase information of the output signal toward opposite direction to input signal without no a priori knowledge of the arrival direction. Also, Digital retrodirective array antennas has merit that it is easy to upgrade and modify compare with analogue retrodirective array antennas. In this paper, we analyze the BER performance of digital retrodirective array antenna under AWGN environment and multipath signal. Simulation results show correct phase estimation and conjugation of retrodirective array antenna by using phase detector block. Also, phase conjugation technique has better BER performance about 1 dB at source than that of without phase conjugation when phase lag is $15^{\circ}$ in AWGN environment. This paper also discusses effect of the presence of multipath signal. Phase and amplitude error about direction of direct signal occurs when retrodirective array system is affected by interference and multipath signal in the presence of multipath signal.

LOS Determination Using INS for an Aircraft Mounted Satellite Tracking Antenna (관성측정기를 이용한 항공기용 위성추적 안테나의 지향각 결정)

  • Jung, Ha-Hyoung;Kim, Chung-Il;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.12-18
    • /
    • 2012
  • This paper presents a computation method of LOS(Line Of Sight) angle using IMU(Inertial Measurement Unit) for an antenna on aerial vehicle to point to a stationary satellite. In the overall system, the antenna is located at the front of the vehicle, and an IMU is introduced to account for body flexure dynamic. And using the differences between the position and velocity of the IMU based navigation and those of GPS/INS at the vehicle center. Kalman filter is designed to suppress Strapdown INS drift errors.

A Study on White Space Search of Wireless Signal based Passive Tracking Technology using Enhanced Search Formula of Patent Analysis (개선된 검색식 기반 특허분석을 통한 무선신호 기반 Passive Tracking 공백기술 도출에 관한 연구)

  • Lee, Hangwon;Kim, Youngok
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.802-816
    • /
    • 2021
  • Purpose: In this paper, we propose a direction of future research and development to be carried out in the passive tracking field by deriving a white space with enhanced search formula of patent analysis. Method: In this paper, we derive a white space by identifying the direction and the flow of technology change and by matrixing the object and solution through extensive patent search with enhanced search formula and analysis in the field of passive tracking technology. Result: By the proposed scheme, 'multi-target positioning and tracking' and '3D positioning technology' using artificial intelligence, adaptive/hybrid positioning technology, and radar/antenna were derived as white space technologies and confirmed with absence of any services or products. Conclusion: The derived white space technologies from this paper are the areas where patent applications are not active and there are not many prior patents, thus it is necessary to secure the rights through more active R&D and patent application activities.

Performance Analysis of Mode Switching Scheme for Reduction of Phase Distortion in GPS Anti-jamming Equipment Based on STAP Algorithm

  • Jung, Junwoo;Yang, Gi-Jung;Park, Sungyeol;Kang, Haengik;Kwon, Seungbok;Kim, Kap Jin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.3
    • /
    • pp.95-105
    • /
    • 2019
  • A method that applies space-time adaptive signal processing (STAP) algorithm based on an array antenna consisting of multiple antenna elements has been known to be effective to remove wide-band jamming signals in GPS receivers. However, the occurrence of phase distortion in navigation signals has been a problem when navigation signals, from which jamming signals are removed using STAP, are supplied to global positioning system (GPS) receivers. This paper verified the navigation performance degradation as a result of phase distortion. To mitigate this phenomenon, this paper proposes a mode switching scheme, in which a bypass mode is adopted to make the best use of the tracking performance of receivers without performing signal processing when jamming signals are not present or weak, and a STAP mode is employed when jamming signals exceed the threshold value. In this paper, the mode switching scheme is proposed for two environments: when receivers are stationary, and when receivers are moving. This paper confirmed that the performance of position error improved because phase distortion could be excluded due to STAP if the bypass mode was adopted under a condition where the jamming signal power level was below the threshold value in an environment where receivers were stationary. However, this paper also observed that the navigation failed due to the instability of tracking performance of receivers due to phase distortion that occurred at the switching time, although the number of switching could be reduced dramatically by proposing a dual threshold scheme of on- and off-thresholds that switched a mode due to the array antenna characteristics of varying gains according to the jamming signal incident direction in an environment where receivers were moving. The analysis results verified that running the STAP algorithm at all times is more efficient than the mode switching, in terms of maintaining stable navigation and ensuring position error performance, to remove jamming signals in an environment where receivers were moving.

A Study on the Optimal Train Recognition Ratio Instrumentation based on RFID (RFID기반 철도차량 최적 인식율 측정에 관한 연구)

  • Kang, Min-Soo;Jung, Eu-Bong;Lee, Key-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.633-639
    • /
    • 2007
  • This study proposes an optimal condition to recognize a train using RFID. In order to recognize a moving train, bandwidth, an angle of antenna and the location of a tag should be considered. In this study, a field test was conducted using two different bandwidths (900MHz and 2.45GHz), four angles of antenna(0, 30, 45, and $60^{\circ}$), different velocities (10, 30 and 50km), and three different locations of tags. The field test verified the optimal condition for recognition of a train, The present study convinced that location detection and tracking of rail freight can be monitored in real time. The present technology can be applied to railway signals including detecting and tracking such as EURO Balis.