• Title/Summary/Keyword: tracker

Search Result 612, Processing Time 0.027 seconds

Development of Ground Antenna Tracker for Drones Based on Satellite System (위성시스템 기반 드론용 지상 안테나 트래커 개발)

  • Se-jun Kim;Jong-pil Choi;Dong-huyn Oh;Da-jin-sol Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.740-745
    • /
    • 2023
  • This study proposes the development of an antenna tracker system using a satellite system to stabilize the communication status of drones and extend the communication distance. The location information of the drone and the ground station was used to maximize communication gain in the general fixed antenna method between the ground station and the drone. We developed a tracker system that can automatically and continuously aim the ground station's antenna at the drone. It is expected that the use of antenna trackers will improve the stabilization of communication conditions and expand the communication distance, thereby leading to the advancement of the drone industry.

Elementary Teacher's Science Class Analysis using Mobile Eye Tracker (이동형 시선추적기를 활용한 초등교사의 과학 수업 분석)

  • Shin, Won-Sub;Kim, Jang-Hwan;Shin, Dong-Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.36 no.4
    • /
    • pp.303-315
    • /
    • 2017
  • The purpose of this study is to analyze elementary teachers' science class objectively and quantitatively using Mobile Eye Tracker. The mobile eye tracker is easy to wear in eyeglasses form. And experiments are collected in video form, so it is very useful for realizing objective data of teacher's class situation in real time. Participants in the study were 2 elementary teachers, and they are teaching sixth grade science in Seoul. Participants took a 40-minute class wearing a mobile eye tracker. Eye movements of participants were collected at 60 Hz, and the collected eye movement data were analyzed using SMI BeGaze 3.7. In this study, the area related to the class was set as the area of interest, we analyzed the visual occupancy of teachers. In addition, we analyzed the linguistic interaction between teacher and students. The results of the study are as follows. First, we analyze the visual occupancy of meaningful areas in teaching-learning activities by class stage. Second, the analysis of eye movements when teachers interacted with students showed that teacher A had a high percentage of students' faces, while teacher B had a high visual occupation in areas not related to classes. Third, the linguistic interaction of the participants were analyzed. Analysis areas include questions, attention-focused language, elementary science teaching terminology, daily interaction, humor, and unnecessary words. This study shows that it is possible to analyze elementary science class objectively and quantitatively through analysis of visual occupancy using mobile eye tracking. In addition, it is expected that teachers' visual attention in teaching activities can be used as an index to analyze the form of language interaction.

Development of Real-Time Vision-based Eye-tracker System for Head Mounted Display (영상정보를 이용한 HMD용 실시간 아이트랙커 시스템)

  • Roh, Eun-Jung;Hong, Jin-Sung;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.539-547
    • /
    • 2007
  • In this paper, development and tests of a real-time eye-tracker system are discussed. The tracker system tracks a user's gaze point through movement of eyes by means of vision-based pupil detection. The vision-based method has an advantage of detecting the exact positions of user's eyes. An infrared camera and a LED are used to acquire a user's pupil image and to extract pupil region, which was hard to extract with software only, from the obtained image, respectively. We develop a pupil-tracking algorithm with Kalman filter and grab the pupil images by using DSP(Digital Signal Processing) system for real-time image processing technique. The real-time eye-tracker system tracks the movements of user's pupils to project their gaze point onto a background image.

Study on Solar Tracker Control Method using AC Motor and CdS Sensor (AC 모터 및 CdS 센서를 이용한 태양 추적 장치 제어 방법에 관한 연구)

  • Kim, Bo-Heon;Kim, Hwang-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.294-301
    • /
    • 2016
  • Recently, the solar tracker has been used to improve the efficiency of solar energy. Solar tracking technologies are classified into the sensor-based method, the program-based method, and the hybrid method. Solar trackers using an AC motor and CdS sensor are low in cost, but the precision of the positions is low, owing to the inertia of the motor and the scattering of sunlight. To compensate for the low precision, we implement a CdS sensor module and propose an AC motor control method using error value. To evaluate the performance of the solar tracker, we implemented a solar water heater. From the experimental results, the solar tracker can achieve ${\pm}2mm$ accuracy for sun, can satisfy ${\pm}15mm$ as a limited error value, and provides a 32% performance enhancement in KSB8202 criteria.

Data Decision Aided Timing Tracker in IR-UWB System using PPM (PPM 변조방식의 IR-UWB 시스템에서 데이터 결정방식을 이용한 타이밍 추적기)

  • Ko, Seok-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.98-105
    • /
    • 2007
  • In this paper, we propose a timing detector using suboptimal maximum likelihood method. The proposed method has an simple reference signal generator. Additionally, timing detector's gain of the proposed method is the same to Early-Late gate and ML method. We reveal that tracking range of time tracker is narrow because of using data-decision, that is, tracking range is ${\pm}0.06ns$ for the 4-order Gaussian monocycle with 0.7ns pulse width. Therefore we can find that searcher must have very accurate acquisition procedure. When estimating a performance of time tracker, we consider a jitter in transmitter and receiver's pulse generation process as well as background noise. By using computer simulation, we propose mean/variance of timing detector and tracking process. Also we consider a mobility in tracking process, i.e., timing error modeled ramp function. In order to propose a performance of time tracker, we consider only one correlation demodulator.

A Study on a Two-Axis Solar Tracking System Based on Fuzzy Logic Control (퍼지 논리 제어를 기반으로 한 2축 태양광 추적시스템에 관한 연구)

  • Ahn, Byeongwon;Lee, Hui-Bae;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.531-537
    • /
    • 2015
  • In order to maximize power output from the solar panels, one needs to keep the panels aligned with the sun. So solar tracker having high reliability must be designed. This paper cares about the design and evaluation of a two-axis solar tracker system based on fuzzy logic control with LabVIEW. The research focus on planning mechanical parts, making an intelligent controller which controls and monitors all parameters via user interface implemented of a fuzzy decision support system for control of photovoltaic panel movement. We also develop a real solar tracker system and analyze the influence indexes such as environment, weather, season, and light condition. The solar tracker is tested in real condition and all parameters related to the system operation are recorded and analyzed. The developed solar tracking system got a much higher efficiency about 38 % compare to fixed solar panel although the weather condition is affected a lot to the solar panel. So we confirmed the our auto tracking system is more effective and can allow more energy to be produced.

User Experience Analysis of a Shoe-mounted Gait Analysis Tracker (신발장착형 보행분석 트래커의 사용자경험 분석)

  • Kim, Siyeon;Jung, Dahee;Lee, Joo-Young;Kwon, Jihyun;Lim, Daeyoung;Jeong, Wonyoung
    • Fashion & Textile Research Journal
    • /
    • v.23 no.3
    • /
    • pp.390-405
    • /
    • 2021
  • Gait analysis trackers have been developed to monitor daily gait patterns to improve users' running performance and reduce the risk of injuries. A variety of gait analysis trackers are available on the market(e.g., foot pods, insoles). Depending on the type of gait analysis tracker, users' discomfort or satisfaction as well as required properties may differ. Hence, the purpose of this study was to compare and analyze user experience of three different types of commercial shoe-mounted gait analysis trackers and their mobile applications in a laboratory environment using questionnaires based on actual experiences of each product. Ten males and ten females who regularly enjoy walking and running exercises participated in the experiment. After the participants set up the tracker and application themselves without support from researchers, ten to thirty minutes' exercise was permitted on each product. Following this, the participants answered questionnaires containing evaluation variables on the device and mobile application, as well as satisfaction, intention to use, recommendation, and purchase. In addition, they were asked questions about the attractive features and shortcomings of each device and application. The results showed that the PRO-SPECS® smart insole was preferred over the others for ease of use, perceived durability, psychological burden of the design, and usefulness of the information provided by the application. Along with the results of questionnaire, this study also discussed strategies and recommendations for future product design and development.

정밀자세결정 시스템의 최적 운용 개념

  • Yoon, Jae-Cheol;Sin, Jae-Min;Moon, Hong-Youl;Lee, Jin-Ho;Chun, Yong-Sik;Cheon, Yee-Jin;Lee, Sang-Ryool
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.114-121
    • /
    • 2005
  • 다목적실용위성 2호 영상의 geo-location 정밀도 80 m (CE90) 요구사항을 만족시키기 위하여, 1개의 IRU 와 2개의 star tracker 들로부터 획득되는 데이터를 이용하여 지상에서 후처리 추정 과정을 거쳐 위성의 자세를 결정하는 정밀자세결정 시스템이 개발되었다. 정밀자세결정 시스템의 정밀도를 극대화하기 위해서는 우주 공간의 극심한 열적 환경으로 인해 발생하는 star tracker 정렬 오차를 효율적으로 보정하여야 한다. 정밀한 정렬 오차의 보정을 위해서는 영상 내에 촬영된 지상의 ground control point 데이터를 이용하여야 하는데, 현실적으로 한반도 모든 지역에 대해 ground control point 를 확보할 수 없다. 현재 항공우주연구원이 확보하고 있거나 이후 확보할 예정에 있는 고해상도 영상을 위한 ground control point 들은 대전지역에 국한될 예정이다. 이와 같은 상황에서 정밀자세결정 시스템의 성능을 높이기 위한 최적의 시스템 운용 개념을 본 연구에서 제시하였으며, 시뮬레이션을 통해 그 타당성을 분석하였다.

  • PDF

Robust Multithreaded Object Tracker through Occlusions for Spatial Augmented Reality

  • Lee, Ahyun;Jang, Insung
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.246-256
    • /
    • 2018
  • A spatial augmented reality (SAR) system enables a virtual image to be projected onto the surface of a real-world object and the user to intuitively control the image using a tangible interface. However, occlusions frequently occur, such as a sudden change in the lighting environment or the generation of obstacles. We propose a robust object tracker based on a multithreaded system, which can track an object robustly through occlusions. Our multithreaded tracker is divided into two threads: the detection thread detects distinctive features in a frame-to-frame manner, and the tracking thread tracks features periodically using an optical-flow-based tracking method. Consequently, although the speed of the detection thread is considerably slow, we achieve real-time performance owing to the multithreaded configuration. Moreover, the proposed outlier filtering automatically updates a random sample consensus distance threshold for eliminating outliers according to environmental changes. Experimental results show that our approach tracks an object robustly in real-time in an SAR environment where there are frequent occlusions occurring from augmented projection images.

Fuzzy rule-based Hand Motion Estimation for A 6 Dimensional Spatial Tracker

  • Lee, Sang-Hoon;Kim, Hyun-Seok;Suh, Il-Hong;Park, Myung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.82-86
    • /
    • 2004
  • A fuzzy rule-based hand-motion estimation algorithm is proposed for a 6 dimensional spatial tracker in which low cost accelerometers and gyros are employed. To be specific, beginning and stopping of hand motions needs to be accurately detected to initiate and terminate integration process to get position and pose of the hand from accelerometer and gyro signals, since errors due to noise and/or hand-shaking motions accumulated by integration processes. Fuzzy rules of yes or no of hand-motion-detection are here proposed for rules of accelerometer signals, and sum of derivatives of accelerometer and gyro signals. Several experimental results and shown to validate our proposed algorithms.

  • PDF