Browse > Article
http://dx.doi.org/10.5805/SFTI.2021.23.3.390

User Experience Analysis of a Shoe-mounted Gait Analysis Tracker  

Kim, Siyeon (Human Convergence Technology R&D Department, KITECH)
Jung, Dahee (Department of Textiles, Merchandising and Fashion Design, Seoul National University)
Lee, Joo-Young (Department of Textiles, Merchandising and Fashion Design, Seoul National University)
Kwon, Jihyun (Human Convergence Technology R&D Department, KITECH)
Lim, Daeyoung (Human Convergence Technology R&D Department, KITECH)
Jeong, Wonyoung (Human Convergence Technology R&D Department, KITECH)
Publication Information
Fashion & Textile Research Journal / v.23, no.3, 2021 , pp. 390-405 More about this Journal
Abstract
Gait analysis trackers have been developed to monitor daily gait patterns to improve users' running performance and reduce the risk of injuries. A variety of gait analysis trackers are available on the market(e.g., foot pods, insoles). Depending on the type of gait analysis tracker, users' discomfort or satisfaction as well as required properties may differ. Hence, the purpose of this study was to compare and analyze user experience of three different types of commercial shoe-mounted gait analysis trackers and their mobile applications in a laboratory environment using questionnaires based on actual experiences of each product. Ten males and ten females who regularly enjoy walking and running exercises participated in the experiment. After the participants set up the tracker and application themselves without support from researchers, ten to thirty minutes' exercise was permitted on each product. Following this, the participants answered questionnaires containing evaluation variables on the device and mobile application, as well as satisfaction, intention to use, recommendation, and purchase. In addition, they were asked questions about the attractive features and shortcomings of each device and application. The results showed that the PRO-SPECS® smart insole was preferred over the others for ease of use, perceived durability, psychological burden of the design, and usefulness of the information provided by the application. Along with the results of questionnaire, this study also discussed strategies and recommendations for future product design and development.
Keywords
gait analysis; gait analysis tracker; running tracker; smart insole; user experience;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Kim, S. J. (2006). Correctional function of custom foot orthotics for foot diseases related to excessive pronation during gait. Korean Journal of Sport Biomechanics, 16(1), 65-79. doi:10.5103/KJSB.2006.16.1.065   DOI
2 Koldenhoven, R. M., & Hertel, J. (2018). Validation of a wearable sensor for measuring running biomechanics. Digital Biomarkers, 2(2), 74-78. doi:10.1159/000491645   DOI
3 Lee, J. (2020). Effect of high elastic running shoes on biomechanical factors. Korean Journal of Sport Biomechanics, 30(4), 285-291. doi:10.5103/KJSB.2020.30.4.285   DOI
4 Lim, B. O., An, S. H., Lee, S. W., & Do, I. Y. (2007). The effects of start and finish distance on the gait variables during walking. Korean Journal of Sport Biomechanics, 17(1), 17-27. doi:10.5103/KJSB.2007.17.1.017   DOI
5 Lin, F., Wang, A., Zhuang, Y., Tomita, M. R., & Xu, W. (2016). Smart insole - A wearable sensor device for unobtrusive gait monitoring in daily life. IEEE Transactions on Industrial Informatics, 12(6), 2281-2291. doi:10.1109/TII.2016.2585643   DOI
6 Farahpour, N., Jafarnezhad, A., Damavandi, M., Bakhtiari, A., & Allard, P. (2016). Gait ground reaction force characteristics of low back pain patients with pronated foot and able-bodied individuals with and without foot pronation. Journal of Biomechanics, 49(9), 1705-1710. doi:10.1016/j.jbiomech.2016.03.056   DOI
7 Park, S. Y., & Lee, J. H. (2017) An exploratory study on design planning of smart i-fitness wear associated with contents. The Korean Society of Design Culture, 23(4), 399-413   DOI
8 Park, J. H. (2017). Characteristics of gait in the elderly - Normal vs. abnormal. Journal of Korean Neurology Association, 35(4 Suppl), 1-4. doi:10.17340/jkna.2017.4.23   DOI
9 Park, S. H., Kim, Y. H., & Park, S. J. (2003) Evaluation method in gait analysis, Science of Emotion & Sensibility, 6(3), 25-32.
10 Park, D. J., Choi, J., & Kim, D. J. (2015) The influence of health apps efficacy, satisfaction and continued use intention on wearable device adoption - A convergence perspective. Journal of Digital Convergence, 13(7), 137-145. doi: 10.14400/JDC.2015.13.7.137   DOI
11 Perry, J., & Burnfield, J. M. (2006). Gait analysis - Normal and pathological function (Jeong, S. Trans.). Slack Incorporated.
12 Winter, D. A. (1987). The biomechanics and motor control of human gait. Ontario, Canada: University of Waterloo Press.
13 Hernando, C., Hernando, C., Martinez-Navarro, I., Collado-Boira, E., Panizo, N. & Hernando, B. (2020). Estimation of energy consumed by middle-aged recreational marathoners during a marathon using accelerometry-based devices. Scientific Reports, 10(1), 1-10. doi:10.1038/s41598-020-58492-8   DOI
14 Hwang, K. S., Jeong, M. G., & Lee, D. C. (1991). An analysis of gait characteristics parameters for the Korean normal studies. Journal of the Ergonomics Society of Korea, 10(2), 15-22.
15 Seo, W. D., Lee, S. S., Shin, W. Y., & Choi, S. I. (2018) Gait type classification using pressure sensor of smart insole. Journal of the Korea Society of Computer and Information, 23(2), 17-26. doi:10.9708/jksci.2018.23.02.017   DOI
16 Suh, S. E., & Roh, J. S. (2015). A study on smart fashion product development trends. The Research Journal of the Costume Culture, 23(6), 1097-1115. doi:10.7741/rjcc.2015.23.6.1097   DOI
17 Sunarya, U., Hariyani, Y. S., Cho, T., Roh, J., Hyeong, J., Sohn, I., Kim, S., Park, C. (2020) Feature analysis of smart shoe sensors for classification of gait pattern. Sensors, 20(21), 6253. doi:10.3390/s20216253   DOI
18 Chung, C. S., Shin, I. S., Seo, J. S., Eun, S. D., & In, K. (2001). The analysis of a gait pattern and the mechanical efficiency on ages and speed conditions. Korean Journal of Sport Biomechanics, 10(2), 205-219.
19 DeJong, A. F., & Hertel, J. (2020). Validation of foot-strike assessment using wearable sensors during running. Journal of Athletic Training, 55(12), 1307-1310. doi:10.4085/1062-6050-0520.19   DOI
20 Cho, H. K., & Lee, J. H. (2008). The development of usability evaluation criterion for sensor based smart clothing. Fashion & Textile Research Journal, 10(4), 473-478.
21 Barnes, K. R., & Kilding, A. E. (2015). Running economy - Measurement, norms, and determining factors. Sports Medicine, 1(1), 1-15. doi:10.1186/s40798-015-0007-y   DOI
22 Catalfamo, P., Moser, D., Ghoussayni, S., & Ewins, D. (2008). Detection of gait events using an F-Scan in-shoe pressure measurement system. Gait & Pressure, 28(3), 420-426. doi:10.1016/j.gaitpost.2008.01.019   DOI
23 Go, E. A., Hong, S. Y., Lee, K. K., & An, K. O. (2013). Effect of active change of foot progression angle on lower extremity joint during gait. Korean Journal of Sport Biomechanics, 23(1), 85-90. doi:10.5103/KJSB.2013.23.1.085   DOI
24 ISO 9241-210 (2019). Ergonomics of human-system interaction - Part 210: Human-centred design for interactive systems. International Organization for Standardization.
25 Jung, J., Huh, J., Park, H., & Shin, B. (2018). A study on acceptance factors and market segmentation of smart device - Focused on UTAUT and personal innovativeness. Korean Journal of Business Administration, 31(1), 27-47.
26 Roberts, M., Mongeon, D., & Prince, F. (2017). Biomechanical parameters for gait analysis - A systematic review of healthy human gait. Physical Therapy and Rehabilitation, 4(6), 1-17. doi:10.7243/2055-2386-4-6   DOI
27 Jang, E., & Cho, G. (2019) The classification and investigation of smart textile sensors for wearable vital signs monitoring. Fashion & Textile Research Journal, 21(6), 697-707. doi:10.5805/SFTI.2019.21.6.697   DOI
28 Ju, N., & Lee, K. H. (2020) Consumer resistance to innovation - Smart clothing. Fashion and Textiles, 7(1), 1-19. doi:10.1186/s40691-020-00210-z   DOI
29 Kang, M. (2019). The understanding biomechanical movements for wellness - Focusing on the exercise for health. Journal of Wellness, 14(3), 379-389. doi:10.21097/ksw.2019.08.14.3.379   DOI
30 Kim, D. Y., Park, C. I., Jang, Y. W., & Park, S. Y. (2001). Kinematic and kinetic comparison between stair climbing and level walking. Journal of Korean Academia of Rehabilitation Medicine, 25(6), 1048-1058.
31 Olsson, T., & Salo, M. (2011). Online user survey on current mobile augmented reality applications. Proceeding of 10th Con IEEE International Symposim, Basel, Switzerland, pp. 75-84. doi:10.1109/ISMAR.2011.6092372.   DOI
32 Delgado-Gonzalo, R., Hubbard, J., Renevey, P., Lemkaddem, A., Vellinga, Q., Ashby, D., Willardson, J., Bertschi, M. (2017). Realtime gait analysis with accelerometer - Based smart shoes. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, South Korea. doi:10.1109/EMBC.2017.8036783   DOI
33 Ainslie, P., Reilly, T., & Westerterp, K. (2003). Estimating human energy expenditure - A review of techniques with particular reference to doubly labelled water. Sports Medicine, 33(9), 683-698. doi:10.2165/00007256-200333090-00004   DOI
34 Chae, H. S., Hong, J. Y., Cho, H. S., Lee, Y. J., Park, S., Han, K. H., & Lee, J. H. (2006). The development of usability evaluation for wearable computer - An investigation of smart clothing. Science of Emotion and Sensibility, 9(3), 265-276.
35 Daoud, A. I., Geissler, G. J., Wang, F., Saretsky, J., Daoud, Y. A., & Lieberman, D. E. (2012). Foot strike and injury rates in endurance runners - A retrospective study. Medicine & Science in Sports & Exercise, 44(7), 1325-1334. doi:10.1249/MSS.0b013e3182465115   DOI
36 de Fontenay, B. P., Roy, J. S., Dubois, B., Bouyer, L., & Esculier, J. F. (2020). Validating commercial werable sensors for running gait parameters estimation. IEEE Sensors Journal, 20(14), 7783-7791. doi:10.1109/JSEN.2020.2982568   DOI