• Title/Summary/Keyword: track slip

Search Result 48, Processing Time 0.022 seconds

An Experimental Study on Relationship of Tractive Force to Slip for Tracked Vehicle on Deep-sea Soft Sediment (심해저 연약지반용 무한궤도차량의 견인력-슬립 관계에 관한 실험적 연구)

  • Yeu, Tae-Kyeong;Park, Soung-Jea;Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Won, Moon-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.75-80
    • /
    • 2007
  • Measuring the ground speed and the rotation speeds of tracks is an easy and realistic method to detect the track slips. It is very advantageous if the slips can be measured and applied to real time control of the vehicle. With a proper speed, the tractive force of a tracked vehicle may be calculated from the vehicle dynamics. For the control of tracked vehicle, the relationship between the slip and the tractive force is necessary. In this paper, a series of drawbar-pull tests, in which slips of two tracks are measured under the variational draw-bar weight, is executed to directly obtain the slip-tractive force relationship. For the purpose of the test, a tractive vehicle model was manufactured, and an artificial soil was simulated by using a bentonite-water mixture.

Off-road tractive performance of tracked vehicles and the effects of soil parameters (궤도차량의 야지기동성 평가와 토지특성의 영향)

  • 김진우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.76-84
    • /
    • 1991
  • The off-road tractive performance of tracked vehicles can be evaluated in terms of soil thrust, motion resistance and drawbar pull. The ability to predict accurately ground pressure distribution under track is of importance since the vehicle sinkage and motion resistance are closely related to it. While the formulation of the method for predicting ground pressure distribution follows closely in spirit the ideas outlined for the terrain with linear pressure- sinkage relation case by Garber and Wong, the analysis of various terrain stiffness is magnified by numerical implementation procedure. The effects of soil parameters on tractive forces can be introduced through the terrain-track interaction such as pressure-sinkage and shearing characteristics. It is illustrated by determining the drawber pull-slip relation and corresponding ground pressure distribution for the terrains typically chosen and by comparing the results with the conventional ones based on normal ground pressure. The factorial experiment method is finally adopted for checking the sensitivity of the values of soil parameters on the drawbar pull.

  • PDF

A Study on Position Detection System of KHST (고속열차의 위치검지시스템에 관한 연구)

  • Han, Young-Jae;Park, Choon-Soo;Lee, Tae-Hyung;Kim, Ki-Hwan;Lee, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.204-205
    • /
    • 2007
  • We have developed a new measurement system by using GPS to complement those errors. In general, GPS receivers are composed of an antenna, tuned to the frequencies transmitted by the satellites, receiver-processors, and a highly-stable clock. The GPS mounted on the roof of TT4 in KHST receives a signal from the RS232 communication port, and it is connected to the network system in TT3 after converting with TCPIP communication. It is able to track the position of vehicle and synchronize the signal from different measurement system simultaneously. Therefore it is able to chase the fault occurrence, track inspection and electrical interruptionat real-time situation more accurately. There is not an error coursed by vehicle conditions such as slip and the slide.

  • PDF

Transmedia and Sungkyunkwan University (DAW 소프트웨어의 UI가 대중음악 창작에 미치는 영향 - Pro Tools의 Edit Window 중심으로)

  • Cho, Hyunjin
    • Trans-
    • /
    • v.8
    • /
    • pp.55-78
    • /
    • 2020
  • Among various tools for pop music composition, what is most frequently used by K-Pop composers is the digital sequencer program, or DAW software (Digital Audio Workstation). When it comes to making commercial music such as K-Pop, the proportion of using these programs is extremely high. By using those software, composers come to undergo an entirely different art creation process. User interface (UI) of the DAW software has a profound effect on the process of making music, particularly vis-a-vis usability and visibility. This study is an attempt to analyze the Avid Pro Tool's UI with a focus on its inherent characteristics revealed in relation with the real effect throughout music composition. This study categorizes the UI elements in the Edit Window of the Pro Tools as Grid, Track, Slip, Clip, and Fade. Those categorized elements would be analyzed through Douglas Morgan's Creative-Process theory, thereby clarifying how visual interface of the DAW software functions in music composition practically.

  • PDF

INTEGRATED CONTROL SYSTEM DESIGN OF ACTIVE FRONT WHEEL STEERING AND FOUR WHEEL TORQUE TO IMPROVE VEHICLE HANDLING AND STABILITY

  • Wu, J.Y.;Tang, H.J.;Li, S.Y.;Zheng, S.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.299-308
    • /
    • 2007
  • This study proposes a two-layer hierarchical control system that integrates active front wheel steering and four wheel braking torque control to improve vehicle handling performance and stability. The first layer is a robust model matching controller (R-MMC) based on linear matrix inequalities (LMIs), which optimizes an active front steering angle compensation and a desired yaw moment control, and calculates reference wheel slip for the target wheel according to the desired yaw moment. The second layer is a moving sliding mode controller (MSMC) that can track the reference wheel slip in a predetermined time by commanding proper braking torque on the target wheel to achieve the desired yaw moment. Since vehicle sideslip angle measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only vehicle yaw rate as the measured input is also developed in this study. The performance and robustness of the SMO and the integrated control system are demonstrated through comprehensive computer simulations. Simulation results reveal the satisfactory tracking ability of the SMO, and the superior improved vehicle handling performance, stability and robustness of the integrated control vehicle.

Development of an Extended Kalman Filter Algorithm for the Localization of Underwater Mining Vehicles (해저 집광차량의 위치 추정을 위한 확장 칼만 필터 알고리즘)

  • WON MOON-CHEOL;CHA HYUK-SANG;HONG SUP
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.82-89
    • /
    • 2005
  • This study deals with the development of the extended Kalman filter(EKF) algorithm for the localization of underwater mining vehicles. Both simulation and experimental studies in a test bed are carried out. For the experiments, a scale dawn tracked vehicle is run in a soil bin containing cohesive soil of bentonite-water mixture. To develop the EKF algorithm, we use a kinematic model including the inner/outer track slips and the slip angle for the vehicle. The measurements include the inner and outer wheel speeds from encoders, the heading angle from a compass sensor and a fiber optic rate gyro, and x and y coordinate position values from a vision system. The vision sensor replaces the LBL(Long Base Line) sonar system used in the real underwater positioning situations. Artificial noise signals mimicking the real LBL noise signal are added to the vision sensor information. To know the mean slip values of the tracks in both straight and cornering maneuver, several trial running experiments are executed before applying the EKF algorithm. Experimental results show the effectiveness of the EKF algorithm in rejecting the sensor measurements noise. Also, the simulation and experimental results show close correlations.

A Study on the Full Active 4WS Control Method Using Nonlinear Tire Model (비선형 타이어모델을 이용한 완전능동형 4WS 제어방법에 관한 연구)

  • 김형내;김석일;김동룡;김건상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.76-85
    • /
    • 1997
  • The understeer characteristics of four wheel steering system(4WS system) in a high speed region have a negative effect upon the yaw velocity, leading to a decrease in the handling ability of vehicle. As a result, even if the side slip angle of vehicle can be kept up a minimum, a driver must compensate a decrease in yaw velocity by increasing the steering wheel angle in order to track the desired vehicle path. In this study, to keep the side slip angle of vehicle at zero and achieve a suitable yaw velocity in vehicle motion, a full active 4WS system(FA 4WS system) with actively steerable front and rear wheels is presented based on a nonlinear vehicle model and a model following control of yaw velocity. And the analysis results show the fat that, besides the excellent stability of vehicle, the FA 4WS system is able to realize better handling performance of vehicle than the previous 4WS systems in the high speed region.

  • PDF

Comparisons of Spatial-Temporal Characteristics between Young and Old Adults While Walking: Factors Influencing the Likelihood of Slip-Initiation

  • Kim, Seok-Won;Yun, Hun-Yong;Lockhart, Thurmon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.43-49
    • /
    • 2006
  • A laboratory study was conducted to evaluate if two different age groups(young vs. old) had differences in walking velocity and heel contact velocity and, furthermore, if these gait characteristics could adversely influence initial friction demand characteristics(i.e. RCOF) and the likelihood of slip-initiation. Twenty eight(14 younger and 14 older adults) participated in the study. While wearing a safety harness, all participants walked at their preferred gait speed for approximately 20 minutes on the linear walking track(1.5m× 20m) consisting of two floor-mounted forced plates. During subsequent 20 cameras, respectively. The results indicated that older adults walked slower(i.e., slower whole body center-of-mass velocity), exhibited lower heel contact velocity, and produced lower initial friction demand characteristics (i.e. RCOF) in comparison to younger adults. However, ANCOVA indicated that the diferences in heel contact velocity between the two age groups were due to the effects of walking velocity. The bivariate analysis further suggested that walking velocity was correlated to RCOF and heel contact velocity, while heel contact velocity was not found to be correlated to RCOF. In conclusion, could be a better indicator for predicting initial friction demand characteristics(i.e. RCOF) not hel contact velocity.

Feedback Shift Controller Design of Automatic Transmission for Tractors (트랙터 자동변속기 되먹임 변속 제어기 설계)

  • Jung, Gyu Hong;Jung, Chang Do;Park, Se Ha
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Nowadays automatic transmission equipped vehicles prevail in construction and agricultural equipment due to their convenience in driving and operation. Though domestic vehicle manufacturers install imported electronic controlled transmissions at present, overseas products will be replaced by domestic ones in the near future owing to development efforts over the past 10 years. For passenger cars, there are many kinds of shift control algorithms that enhance the shift quality such as feedback and learning control. However, since shift control technologies for heavy duty vehicles are not highly developed, it is possible to improve the shift quality with an organized control method. A feedback control algorithm for neutral-into-gear shift, which is enabled during the inertia phase for the master clutch slip speed to track the slip speed reference, is proposed based on the power transmission structure of TH100. The performance of the feedback shift control is verified by a vehicle test which is implemented with firmware embedded TCU. As the master clutch engages along the predetermined speed trajectory, it can be concluded that the shift quality can be managed by a shift time control parameter. By extending the proposed feedback algorithm for neutral-into-gear shift to gear change and shuttle shift, it is expected that the quality of the shift can be improved.

Influence of the Speeds on the Curve Squeal Noise of Railway Vehicles (철도차량의 곡선부 스킬 소음에 대한 속도의 영향)

  • Lee, Chan-Woo;Kim, Jae-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.572-577
    • /
    • 2011
  • Curve squealing of inter-city railway vehicle is a noise with high acoustic pressure and rather narrow frequency spectra. This noise turns out to be very annoying for the people living in the neighborhood of locations and the passenger in railway vehicle where this phenomenon occurs. Squealing is caused by a self-exited stick-slip oscillation in the wheel-rail contact. Curve squeal noise of railway vehicles that passed by a factor of the speed limit, so to overcome in order to improve running performance is one of the largest technology. In the present paper, characteristic of squeal noise behavior at the Hanvit-200 tilting train test-site. Curve squealing of railway wheels/rail contact occurs in R400~ R800 curves with a frequency range of about 4~11 kHz. If the curve is less than the radius of wheel frail contact due to |left-right| noise level difference (dBA) shows a significant effect of squeal noise were more likely.