• Title/Summary/Keyword: trace salts

Search Result 33, Processing Time 0.021 seconds

Effect of AlF3 on Zr Electrorefining Process in Chloride-Fluoride Mixed Salts for the Treatment of Cladding Hull Wastes (폐 피복관 처리를 위한 염소계-불소계 혼합용융염 내 지르코늄 전해정련공정에서 삼불화알루미늄의 효과 연구)

  • Lee, Chang Hwa;Kang, Deok Yoon;Lee, Sung-Jai;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Zr electrorefining is demonstrated herein using Zirlo tubes in a chloride-fluoride mixed molten salt in the presence of $AlF_3$. Cyclic voltammetry reveals a monotonic shift in the onset of metal reduction kinetics towards positive potential and an increase in intensity of the additional peaks associated with Zr-Al alloy formation with increasing $AlF_3$ concentration. Unlike the galvanostatic deposition mode, a radial plate-type Zr growth is evident at the top surface of the salt during Zr electrorefining at a constant potential of -1.2 V. The diameter of the plate-type Zr deposit gradually increases with increasing $AlF_3$ concentration. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) and X-ray photoelectron spectroscopy (XPS) analyses for the plate-type Zr deposit show that trace amount of Al is incorporated as Zr-Al alloys with different chemical compositions between the top and bottom surface of the deposit. Addition of $AlF_3$ is effective in lowering the residual salt content in the deposit and in improving the current efficiency for Zr recovery.

A Review of Pilot Plant Studies on Elemental Mercury Oxidation Using Catalytic DeNOxing Systems in MW-Scale Coal Combustion Flue Gases (MW급 석탄연소 배가스에서 탈질촉매시스템을 이용한 원소수은 산화 실증사례)

  • Kim, Moon Hyeon;Nguyen, Thi Phuong Thao
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.207-216
    • /
    • 2021
  • Major anthropogenic emissions of elemental mercury (Hg0) occur from coal-fired power plants, and the emissions can be controlled successfully using NH3-SCR (selective catalytic reduction) systems with catalysts. Although the catalysts can easily convert the gaseous mercury into Hg2+ species, the reactions are greatly dependent on the flue gas constituents and SCR conditions. Numerous deNOxing catalysts have been proposed for considerable reduction in power plant mercury emissions; however, there are few studies to date of elemental mercury oxidation using SCR processes with MW- and full-scale coal-fired boilers. In these flue gas streams, the chemistry of the mercury oxidation is very complicated. Coal types, deNOxing catalytic systems, and operating conditions are critical in determining the extent of the oxidation. Of these parameters, halogen element levels in coals may become a key vehicle for obtaining better Hg0 oxidation efficiency. Such halogens are Cl, Br, and F and the former one is predominant in coals. The chlorine exists in the form of salts and is transformed to gaseous HCl with a trace amount of Cl2 during the course of coal combustion. The HCl acts as a very powerful promoter for high catalytic Hg0 oxidation; however, this can be strongly dependent on the type of coal because of a wide variation in the chlorine contents of coal.

Growth performance and blood profiles of Hanwoo steers at fattening stage fed Korean rice wine residue

  • Kim, Seon Ho;Ramos, Sonny C.;Jeong, Chang Dae;Mamuad, Lovelia L.;Park, Keun Kyu;Cho, Yong Il;Son, Arang;Lee, Sang-Suk
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.812-823
    • /
    • 2020
  • The aim of this study was to investigate the effects of Korean rice wine residue (RWR) on the growth performance and blood profiles of Hanwoo steers in the fattening stage. In situ and in vivo experiments were conducted to analyze rumen fermentation characteristics and total tract digestibility, respectively. Three cannulated Hanwoo steers (mean body weight: 448 ± 30 kg) were used in both analyses. The growth performance of 27 experimental animals in the fattening stage (initial body weight: 353.58 ± 9.76 kg) was evaluated after 13 months of feeding. The animals were divided into three treatment groups (n = 9/group). The treatments comprised total mixed ration (TMR) only (CON), TMR + 10% RWR (10% RWR), and TMR + 15% RWR (15% RWR). The diets of equal proportions were fed daily at 08:00 and 18:00 h based on 2% of the body weight. The animals had free access to water and trace mineral salts throughout the experiment. Supplementation of 15% RWR significantly decreased (p < 0.05) the rumen fluid pH compared with the control treatment, but there was no significant difference in the total volatile fatty acid concentration. It also significantly increased (p < 0.05) dry matter digestibility compared with the other treatments. The total weight gain and average daily gain of the animals in the RWR-supplemented groups were significantly higher (p < 0.05) than those in the control group. Furthermore, the feed intake and feed efficiency of the RWR-supplemented groups were higher than those of the control group. Supplementation of RWR did not affect the alcohol, albumin, glucose, total cholesterol, triglyceride, and low-density lipoprotein concentrations, and aspartate aminotransferase and alanine transaminase activities in the blood; these parameters were within the normal range. The high-density lipoprotein and creatinine concentrations were significantly higher in the 15% RWR group, whereas the blood urea nitrogen concentration was significantly higher in the 10% RWR group than in the other groups. These results suggest that TMR with 15% RWR can serve as an alternate feed resource for ruminants.