• Title/Summary/Keyword: toxic culture

Search Result 282, Processing Time 0.031 seconds

Biosurfactant as a microbial pesticide

  • Lee, Baek-Seok;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.40-44
    • /
    • 2003
  • Soil-borne infectious disease including Pythium aphanidermatum and Rhizoctonia solani causes severe damage to plants, such as cucumber. This soil-borne infectious disease was not controlled effectively by chemical pesticide. Since these diseases spread through the soil, chemical agents are usually ineffective. Instead, biological control, including antagonistic microbe can be used as a preferred control method. An efficient method was developed to select an antagonistic strain to be used as a biological control agent strain. In this new method, surface tension reduction potential of an isolate was included in the ‘decision factor’ in addition to the other factors, such as growth rate, and pathogen inhibition rate. Considering these 3 decision factors by a statistical method, an isolate from soil was selected and was identified as Bacillus sp. GB16. In the pot test, this strain showed the best performance among the isolated strains. The lowest disease incidence rate and fastest seed growth was observed when Bacillus sp. GB16 was used. Therefore this strain was considered as plant growth promoting rhizobacteria (PGPR). The action of surface tension reducing component was deduced as the enhancement of wetting, spreading, and residing of antagonistic strain in the rhizosphere. This result showed that new selection method was significantly effective in selecting the best antagonistic strain for biological control of soil-borne infectious plant pathogen. The antifungal substances against P. aphanidermatum and R. solani were partially purified from the culture filtrates of Bacillus sp. GB16. In this study, lipopeptide possessing antifungal activity was isolated from Bacillus sp. GB16 cultures by various purification procedures and was identified as a surfactin-like lipopeptide based on the Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), high performance liquid chromatography mass spectroscopy (HPLC-MS), and quadrupole time-of-flight (Q-TOF) ESI-MS/MS data. The lipopeptide, named GB16-BS, completely inhibited the growth of Pythium aphanidermatum, Rhizoctonia solani, Penicillium sp., and Botrytis cineria at concentrations of 10 and 50 mg/L, respectively. A novel method to prevent the foaming and to provide oxygen was developed. During the production of surface active agent, such as lipopeptide (surfactin), large amount of foam was produced by aeration. This resulted in the carryover of cells to the outside of the fermentor, which leads to the significant loss of cells. Instead of using cell-toxic antifoaming agents, low amount of hydrogen peroxide was added. Catalase produced by cells converted hydrogen peroxide into oxygen and water. Also addition of corn oil as an oxygen vector as well as antifoaming agent was attempted. In addition, Ca-stearate, a metal soap, was added to enhance the antifoam activity of com oil. These methods could prevent the foaming significantly and maintained high dissolved oxygen in spite of lower aeration and agitation. Using these methods, high cell density, could be achieved with increased lipopeptide productivity. In conclusion to produce an effective biological control agent for soil-borne infectious disease, following strategies were attempted i) effective screening of antagonist by including surface tension as an important decision factor ii) identification of antifungal compound produced from the isolated strain iii) novel oxygenation by $H_2O_2-catalase$ with vegetable oil for antifungal lipopeptide production.

  • PDF

Comparative Analysis about the Effect of Isolated Phosphatidylcholine and Sodium Deoxycholate for the Viability of Adipocyte (Phosphatidylcholine과 Sodium Deoxycholate가 지방세포 생존에 미치는 영향의 비교 분석)

  • Rha, Eun-Young;Kang, Jo-A;Lee, Jung-Ho;Oh, Deuk-Young;Seo, Je-Won;Moon, Suk-Ho;Ahn, Sang-Tae;Rhie, Jong-Won
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.531-534
    • /
    • 2010
  • Purpose: Lipobean$^{(R)}$s, widely used in lipodissolving techniques, contain phosphatidylcholine and sodium deoxycholate as its main substances. They have been approved only as medication for liver disease by the FDA. However, they have been used under various clinical settings without exact knowledge of its action mechanism. The authors designed an in vitro study to analyze the effects of different concentrations of phosphatidylcholine and sodium deoxycholate on adipocytes and other types of cells. Methods: Human adipose-derived stem cell were cultured and induced to differentiate into adipocytes. Fibroblasts extracted from human inferior turbinate tissue, and MC3T3-E1 osteoblast lines were cultured. Phosphatidylcholine solution dissolved with ethanol was applied to the culture medium at differing concentrations (1, 4, 7, 10 mg/mL). The sodium deoxycholate solution dissolved in DMSO applied to the medium at differing concentrations (0.07, 0.1. 0.4. 0.7 mg/mL). Cells were dispersed at a concentration of $5{\times}10^3$ cells/well in 24 well plates, and surviving cells were calculated 1 day after the application using a CCK-8 kit. Results: The number of surviving cells of adipocytes, fibroblasts and osteoblasts decreased as the concentration of sodium deoxycholate increased. However, all types of cells that had been processed in a phosphatidylcholine showed a cell survival rate of over 70% at all concentrations. Conclusion: This study shows that sodium deoxycholate is the more major factor in destroying adipocytes, and it is also toxic to the other cells. Therefore, we conclude that care must be taken when using Lipobean$^{(R)}$s as a method of reducing adipose tissue, for its toxicity may destroy other nontarget cells existing in the subcutaneous tissue layer.

Biodegradation Pathways of Polychlorinated Biphenyls by Soil Fungus Aspergillus niger (Polychlorinated Biphenyl의 토양 미생물 Aspergillus niger에 의한 생분해 경로)

  • Kim, Chang-Su;Lim, Do-Hyung;Keum, Young-Soo
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • As of many organochlorine pesticides, polychlorinated biphenyls are ubiquitous organic contaminants, which can be found in the most environmental matrices. Their toxic effects include endocrinedisrupting activity. Most researches with these toxicants performed with mixtures of congeners, namely Aroclor and related study has been done in complex environmental matrix, rather than single biosystems or pure congeners. 5 congeners were synthesized and their fates in pure microbial culture (Aspergillus niger) were determined in this study. Among biphenyl and synthetic congeners, biphenyl, PCB-1 (2-chlorobiphenyl), and PCB-3 (4-chlorobiphenyl) were rapidly transformed to hydrophilic metabolites, followed by PCB-38 (3,4,5-trichlorobiphenyl), while the degradation of PCB-126 (3,3',4,4',5-pentachlorobiphenyl) was not observed. The amounts of transformation for biphenyl, PCB-1, PCB-3, and PCB-38 were 65, 38, 52, and 2% respectively. The major metabolites of the above congeners were identified as mono- and di-hydroxy biphenyls, which are known to give adverse endocrinological effects.

Biodegradation of Phenanthrene by Transformant Trametes versicolor MrP1 (구름버섯의 형질전환체 Trametes versicolor MrP1에 의한 Phenanthrene의 생분해)

  • Choi, Yun-Seong;Choi, Hyoung-Tae;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.273-278
    • /
    • 2007
  • As a model compound of PAHs (polycyclic aromatic hydrocarbons) phenanthrene has been regarded as a toxic material, mutagen and carcinogen in various animals. Biodegradation conditions of phenanthrene such as pH, temperature, shaking speed, stabilizer and cofactor of degrading enzymes were investigated with Trametes versicolor and its transformant T. versicolor MrP1 in YMG medium, minimal medium and soil microcosm. T. versicolor MrP1 can overexpress mrp gene encoding Mn-repressed peroxidase that is involved in fungal degradation. Biodegradations of phenanthrene by T. versicolor and T. versicolor MrP1 were optimally performed in conditions of weak-acid (pH 6.0), $30^{\circ}C$, shaken culture and medium containing 5 mM veratryl alcohol or tryptophan. In these optimal conditions, biodegradation of phenanthrene by T. versicolor MrP1 is 31% higher than that of wild type strain in a minimal medium for 20 days. Biodegradation of phenanthrene by T. versicolor MrP1 was also higher than that of wild type in soil microcosm. T. versicolor MrP1 can be a excellent candidate for the bioremediation of PAHs contaminated environments.

Insect Resistance of Tobacco Plant Expressing CpBV-ELP1 Derived from a Polydnavirus (폴리드나바이러스 유래 CpBV-ELP1 발현 담배의 내충성)

  • Kim, Eunseong;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.56 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Polydnaviruses (PDVs) are a group of double-stranded DNA viruses symbiotic to some endoparasitoid wasps. Cotesia plutellae bracovirus (CpBV) is a PDV symbiotic to an endoparasitoid wasp, C. plutellae, parasitizing young larvae of Plutella xylostella. An early expressed gene, CpBV-ELP1, plays an important role in the parasitism by suppressing host cellular immunity by its cytotoxic activity against hemocytes. This study aimed to test its oral toxicity against insect pest by expressing it in a recombinant tobacco plant. A recombinant CpBV-ELP1 protein was produced using a baculovirus expression system and secreted to cell culture medium. The cell cultured media were used to purify CpBV-ELP1 by a sequential array of purification steps: ammonium sulfate fractionation, size exclusion chromatography, and ion exchange chromatography. Purified rCpBV-ELP1 exhibited a significant cytotoxicity against Spodoptera exigua hemocytes. CpBV-ELP1 was highly toxic to the fifth instar larvae of S. exigua by injection to hemocoel. It also showed a significant oral toxicity to fifth instar larvae of S. exigua by a leaf-dipping assay. CpBV-ELP1 was cloned into pBI121 vector under CaMV 35S promoter with opaline synthase terminator. Resulting recombinant vector (pBI121-ELP1) was used to transform Agrobacterium tumefaciens LBA4404. The recombinant bacteria were then used to induce callus of a tobacco (Nicotiana tabacum Xanthi) leaves and subsequent generation (T1) plants were selected. T1 generation tobacco plants expressing CpBV-ELP1 gave significant insecticidal activities against S. exigua larvae. These results suggest that CpBV-ELP1 gene can be used to control insect pests by constructing transgenic crops.

Potential of Marine Ciliate Mesodinium rubrum as a Standard Test Species for Marine Ecotoxicological Study (해양생태독성 평가용 표준시험생물로서 섬모충류 Mesodinium rubrum에 대한 연구)

  • An, Kyoung-Ho;Park, Gyung-Soo;Lee, Seung-Min
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1087-1093
    • /
    • 2011
  • The mixotrophic marine ciliate Mesodinium rubrum possesses a highly modified algal endosymbiont as a nutrition source for the species. Accordingly, we assumed that the species can reflect the ecotoxicity on marine producer (as phytoplankton) and consumer (as zooplankton) both. A series of experiments were conducted to identify the potential of the species as a standard test species for marine ecotoxicological study. The comparison of species sensitivity on reference toxic materials was made using potassium dichromate for phytoplankton and copper chloride for zooplankton. The ciliate revealed the highest sensitivity on both reference materials among the seven test species including phytoplankton, benthic copepod and rotifer species. The toxicity end point of the species was 72hr-$EC_{50}$=1.52 mg/L (as potassium dichromate) estimated by population growth inhibition (PGI), which is more sensitive than the most sensitive phytoplankton Skeletonema costatum (72hr-$EC_{50}$=3.05 mg/L). As comparison to rotifer, it also revealed higher sensitivity on copper chloride; 72hr-$EC_{50}$=0.38 mg/L for ciliate and 48hr-$EC_{50}$=0.48 mg/L for rotifer. Also, the elutriate toxicity test of various ocean disposal wastes were conducted to identify the potential of ciliate toxicity test application using industrial waste sludges. The toxicity of leather processing waste sludge was highest on the ciliate, followed by dyeing waste sludge and dye production waste sludge as an increasing order of toxicity. 72h-$EC_{50}$ of ciliate PGI test was 1.83% and that of S. costatum 3.84% for leather waste sludge which showed highest toxicity. The toxicity test results also revealed that the highest sensitivity was observed on ciliate species on ocean disposed sludge wastes. Also, ciliate toxicity test well discriminated the degree of toxicity between sludge sources; 72h-$EC_{50}$ values were 1.83% for leather processing waste sludge, 16.75% for dye production waste sludge and 27.75% for textile production waste sludge. Even the laboratory culture methods of the species were not generally established yet, the species has high potential as the standard test species for marine toxicity test in terms of the dual reflection of phyto- and zooplankton toxicity from single test, sensitivity and test replicability.

Combined effects of copper and temperature on Hematological constituents in the Rock fish, Sebastes schlegeli (조피볼락, Sebastes schlegeli의 혈액학적 성분변화에 미치는 구리 및 온도의 복합적 영향)

  • Baeck, SuKyong;Min, EunYoung;Kang, Ju-Chan
    • Journal of fish pathology
    • /
    • v.27 no.1
    • /
    • pp.57-65
    • /
    • 2014
  • Copper ($CuSO_4$) has been widely used to control algae and pathogens in fish culture ponds. However, its toxic effects on fish depend not only on its concentration in water but also on water quality. The susceptibility of the rockfish, Sebastes schlegeli to copper was evaluated at three water-temperatures (WT; 18, 23 and $28^{\circ}C$) for 4 days. After the exposure of two copper concentrations (100 and $200{\mu}g/L$), a hematological effect was exerted on rockfish, by causing changes in red blood cell count and hematocrit value at $28^{\circ}C$. Total protein levels of the fish showed a tendency of co-increase with glucose depend on the WT, after copper exposure. However, the plasma calcium and magnesium levels were significantly increased at $200{\mu}g/L$ copper, regardless of the WT. Enzymes activities including ALT and LDH in serum were also significantly increased depend upon the copper treatment only. This indicates that inorganic components and enzymes activities were sensitive indexes to stress by toxicant such as copper. The cortisol levels were significantly elevated by both WT rising and copper treatment in serum of rock fish. In conclusion, these changes can be seen as an initial response to temperature stress and as a sustaining response to copper exposure. The present findings suggest that a simultaneous stress by temperature change and copper exposure could accelerate an alteration of hematological and plasma biological parameters in the rockfish.

Bioaccumulation Patterns and Responses of Fleece-flower; Persicaria thunbergii to Cadmium and Lead

  • Kim, In-Sung;Kyung Hong kang;Lee, Eun-Ju
    • 한국생태학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.119-125
    • /
    • 2002
  • Application of phytoremediation in the polluted area to remove undesirable materials is a complex and difficult subject without detailed investigation and experimentation. We investigated the accumulation patterns of cadmium and lead in plants naturally grown, the bioavailability of plants to accumulate these toxic metals and the responses of P. thunbergii to cadmium and lead. The soil samples contained detectable lead (<17.5$\mu\textrm{g}$/g), whereas cadmium was not detected in the soils of study area. The whole body of Persicaria thunbergii contained detectable lead (<320.8$\mu\textrm{g}$/g) but cadmium was detected only in the stem (<7.4$\mu\textrm{g}$/g) and root (<10.4$\mu\textrm{g}$/g) of P. thunbergii. Cadmium was not detected in Trapa japonica and Nymphoides peltata, whereas lead was detected in T. japonica (<323.7$\mu\textrm{g}$/g) and N. peltata (<177.5$\mu\textrm{g}$/g). Correlation coefficient between lead content in soil and in these plant samples represented positive correlation. The total content of lead in each plant sample increased in the order of N.peltata$\leq$P.thunbergii

  • PDF

Effect of high glucose on the prostaglandin $E_2$ production in human gingival fibroblasts and periodontal ligament cells (고농도의 포도당이 치은섬유아세포 및 치주인대세포의 Prostaglandin $E_2$ 생성에 미치는 영향)

  • Chung, Jong-Hyuk;Kwon, Young-Hyuk;Lee, Man-Sup;Park, Joon-Bong;Herr, Yeek;Kim, Sung-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.909-922
    • /
    • 1997
  • The purpose of this study was to evaluate the effect of high glucose on prostaglandin E2 production in human gingival fibroblasts and periodontal ligament cells in vitro. In control group, the cells($5{\times}10^4\;cells/ml$) were cultured with Dulbecco's Modified Eagle's Medium contained with 10% fetal bovine serum, 45mg/dl glucose. In experimental groups, glucose was added to the above culture condition at the final glucose concentrations of 100mg/dl(Test group 1), 200mg/dl (Test group 2) and 400mg/dl (Test group 3). Then each group was tested for the cell proliferation rate, protein levels, and prostaglandin E2 production at $\frac{1}{2}$, 1, 2, 5 days. The results were as follows : 1. As glucose concentration increased, cell proliferation rate decreased significantly at 1, 2, 5 days in human gingival fibroblasts and periodontal ligament cells(P<0.01). 2. In human gingival fibroblasts, test group 2 and 3 showed significantly decreased protein levels as compared to control group at 5 days (P<0.01). 3. In human periodontal ligament cells, as glucose concentration increased, protein levels decreased significantly at 2 days and 5 days(P<0.01). 4. Prostaglandin $E_2$ production in human gingival fibroblasts and human periodontal ligament cells significantly increased as glucose concentration increased(P<0.01). results at 5 days showed obvious difference as compared to those at 2 days. From the above results, high glucose appeared to affect cellular activities including cell proliferation rate, protein levels and enhance prostaglandin $E_2$ production. It was assumed that prostaglandin E2 production by high glucose enhances inflammatory reaction and has a toxic effect on human gingival fibroblasts and human periodontal ligament cells. This study suggests that periodontal disease in diabetic patient is related to prostaglandin $E_2$ production.

  • PDF

Maintenance and Differentiation of Pluripotential Embryonic Cell Lines from Mouse Blastocysts (BCF1 생쥐 배반포기 유래 배아간세포 작성에 관한 연구)

  • 이재원;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.4
    • /
    • pp.235-244
    • /
    • 1995
  • The present study was designed to demonstrate that ES cell lines efficiently could be isolated from explanted blastocysts of hybrid BCF1 mouse when grown on STO feeder layer derived from mouse fibroblasts in culture medium supplemented with leukemia inhibitory factor (LIF). The expanded blastocysts were attached to mitomycin C-inactivated STO feeder layer and were cultured for 4 days. Four days later the ICM was disaggregated by a short term trypsin treatment (0.25% trypsin / 0.04% EDT A for 2-3 min). The resulting cell suspension was seeded on a new STO feeder layer and covered with DMEM supplemented with 10% FCS, 0.1 mM nonessential amino acid, 0.1 mM sodium pyruvate, 0.1 mM mercaptoethanol and 1,000 U/ml LIF. Colonies of ES-like cells were observed after the second passage. These colonies were repeatedly passaged at approximately 5 day intervals. In this study, five ES-like celllines were isolated by directly explanting blastocysts, but three lines were lost after the 5th passage, possibly due to toxic effects of a new FCS batch. The characterization of developmental potential of isolated cell lines was performed with respect to in vitro differentiation and specific activity of alkaline phosphatase (AP). When cells were cultured in suspension, the aggregates of cell lines were capable of forming simple embryoid bodies (EB), and showed the capacity for forming cystic multilayer EBs. In addition, the cell lines were positive for AP staining, a biochemical marker characteristic of mouse ES cells.

  • PDF