• Title/Summary/Keyword: towers

Search Result 546, Processing Time 0.037 seconds

345kV Overhead Transmission Line Collapse Analysis and Countermeasures (345kV 인천화력 송전선로 철탑도괴 원인분석 및 대책)

  • Park, Jae-Ung;Shin, Tai-Woo;Choi, Jin-Sung;Choi, Han-Yeol;Min, Byeong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.531-535
    • /
    • 2010
  • 345kV Incheon Thermal Power Plant Transmission Line Collapse Analysis and Countermeasures. The Typhoon Galmaegi which had been formed in July 15, 2008 diminished into a tropical cyclone and cooled the air above the West Sea. The cooled air colliding with the warm inland air caused a strong whirlwind at some places in the west seaside; the whirlwind battered the 345kV Incheon Thermal Power Plant Transmission Line to be collapsed. The resistance of transmission towers against wind pressure, one of the key elements in transmission line engineering, is designed to endure the pressure corresponding to the maximum instantaneous wind speed. Before the above accident happened, no transmission line has ever been collapsed by a whirlwind. So this paper is aimed to analyze causes that collapsed 345kV Incheon Thermal Power Plant transmission line and to introduce countermeasures.

Fault Immune Pico-Hydro Powered Base Station of Remote Telecommunication Tower

  • Verma, Vishal;Pant, Peeyush;Singh, Bhim
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1612-1620
    • /
    • 2016
  • This paper presents the dynamic excitation control of a siphon-turbine coupled pico-hydro powered cage rotor induction generator and load matching for off-grid electricity generation. Through the proposed dual-role of the current-controlled voltage source converter (VSC), acting as static synchronous compensator and load controller, real and reactive power are dynamically controlled in a decoupled manner with a self supported DC-bus. The proposed scheme entails minimal computation for ensuring the rated (set) capacity of real power. The scheme also exhibits fault immunity for protection, thus enabling the effective handling of constant power electrical loads presented by base telecom station towers in remote locations. The performance of the system is evaluated under MATLAB/Simulink and is experimented through a developed hardware prototype. Simulation and experimental results show close conformity and validate the effectiveness of the proposed scheme.

Analytical and experimental fatigue analysis of wind turbine tower connection bolts

  • Ajaei, Behrouz Badrkhani;Soyoz, Serdar
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • This paper presents a method of estimation of fatigue demands on connection bolts of tubular steel wind turbine towers. The presented method relies on numerical simulation of aerodynamic loads and structural behavior of bolted connections modeled using finite element method. Variability of wind parameters is represented by a set of values derived from their probability densities, which are adjusted based on field measurements. Numerically generated stress time-series show agreement with the measurements from strain gauges inside bolts, in terms of power spectra and the resulting damage. Position of each bolt has a determining effect on its fatigue damage. The proposed framework for fatigue life estimation represents the complexities in loading and local behavior of the structure. On the other hand, the developed procedure is computationally efficient since it requires a limited number of simulations for statistically representing the wind variations.

Seismic vulnerability and preservation of historical masonry monumental structures

  • Dogangun, Adem;Sezen, Halil
    • Earthquakes and Structures
    • /
    • v.3 no.1
    • /
    • pp.83-95
    • /
    • 2012
  • Seismic damage and vulnerability of five historical masonry structures surveyed after the 1999 Kocaeli and Duzce, Turkey earthquakes are discussed in this paper. The structures are located in two neighboring cities that have been struck by five very large ($M_s{\geq}7.0$) earthquakes during the $20^{th}$ century alone. Older masonry mosques with arches and domes and their masonry minarets (slender towers) were among the most affected structures in this highly seismic region. While some of the religious and historical structures had virtually no damage, most structures suffered significant damage or collapsed. In the city of Bolu, for example, approximately 600-year-old Imaret, 500-year-old Kadi, 250-year-old Sarachane, and 100-year-old Yildirim Bayezid mosques suffered substantial structural damage after the 1999 earthquakes. Another historical mosque surveyed in Duzce partially collapsed. Most common factors contributing to deterioration of historical structures are also presented. Furthermore, a brief overview of issues associated with analysis and modeling of historical masonry structures is provided.

Characterization of open and suburban boundary layer wind turbulence in 2008 Hurricane Ike

  • Jung, S.;Masters, F.J.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.135-162
    • /
    • 2013
  • The majority of experiments to characterize the turbulence in the surface layer have been performed in flat, open expanses. In order to characterize the turbulence in built-up terrain, two mobile towers were deployed during Hurricane Ike (2008) in close proximity, but downwind of different terrain conditions: suburban and open. Due to the significant non-stationarity of the data primarily caused by changes in wind direction, empirical mode decomposition was employed to de-trend the signal. Analysis of the data showed that the along-wind mean turbulence intensity of the suburban terrain was 37% higher than that of the open terrain. For the mean vertical turbulence intensity, the increase for the suburban terrain was as high as 74%, which may have important implications in structural engineering. The gust factor of the suburban terrain was also 16% higher than that of the open terrain. Compared to non-hurricane spectral models, the obtained spectra showed significantly higher energy in low frequencies especially for the open terrain.

Comparative structural analysis of lattice hybrid and tubular wind turbine towers

  • Kumaravel, R.;Krishnamoorthy, A.
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • This paper presents a comparative structural analysis of lattice hybrid tower with six legs with conventional tubular steel tower for an onshore wind turbine using finite element method. Usually a lattice hybrid tower will have a conventional industry standard 'L' profile section for the lattice construction with four legs. In this work, the researcher attempted to identify and analyze the strength of six legged lattice hybrid tower designed with a special profile instead of four legged L profile. And to compare the structural benefits of special star profile with the conventional tubular tower. Using Ansys, a commercial FEM software, both static and dynamic structural analyses were performed. A simplified finite element model that represents the wind turbine tower was created using Shell elements. An ultimate load condition was applied to check the stress level of the tower in the static analysis. For the dynamic analysis, the frequency extraction was performed in order to obtain the natural frequencies of the tower.

Application of Protecting Methods for Single Point Bonding on Underground Transmission Cable (지중 송전 케이블의 편단접지 시스템에서의 계통 보호 방안)

  • Ha, C.W.;Kim, J.N.;Lee, I.H.;Kim, J.C.;Lee, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.15-17
    • /
    • 2005
  • The protection of underground cables against transient overvoltages resulting from lightning and other causes is important in cable-line which is connected with overhead line and underground cable. This paper investigates the failure of SVL(Sheath Voltage Limiter) and presents the application of protection methods for single point bonding on underground transmission cable system. EMTP(Electromagnetic Transient Program) is used in order to study the overvoltages and modeling of components of the system such as, underground cables, SVLs and towers.

  • PDF

A Characteristic of AC Impedance for property assessment of paints on Transmission Towers (송전 철탑 도료의 성능평가를 위한 교류임피던스 특성 평가)

  • Choi, I.H.;Choi, J.H.;Lee, D.I.;Wie, W.B.;Kim, T.Y.;Min, B.W.;Baek, S.D.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.492-493
    • /
    • 2006
  • 송전 철탑의 도장 도료의 성능 평가는 부착강도시험, 염수분무시험, 내후성시험을 실시하고 있으며, 본 연구에서는 새로운 도장성능 방법인 교류임피던스를 측정하여 철탑 도장 도료의 특성을 평가하였다. 그 결과 우레탄계 2회 도장은 침지 초기와 침지 6일 후 임피던스가 $10^{10}[{\Omega}]$으로 양호한 특성을 보였지만 새롭게 개발된 실록산계 1회 도장은 6일 침지 후 $10^7[{\Omega}]$으로 낮아서 부식방식용 도장 도료로써의 특성은 낮았다. 따라서 철탑 도장 도료는 2회 도장을 실시하는 것이 타당한 것으로 사료된다.

  • PDF

A Study on the Identification of Specific Earth Resistivity for Grounding Design of 500 KV Transmission Towers (500 kV 송전철탑 접지설계를 위한 대지저항률 산정에 관한 연구)

  • Choi, Jong-Kee;Lee, Sung-Doo;Lee, Dong-Il;Jung, Gil-Jo;Kim, Kyung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.703-705
    • /
    • 2005
  • 접지설계에 있어서 토양의 전기적 특성은 접지극의 형상과 더불어 가장 중요한 설계요소 중 하나이며 이러한 토양의 전기적 특성은 접지극이 매설될 지역의 고유한 저항률, 즉 고유저항률(specific earth resistivity)로 대표되어 왔다. 이처럼 고유저항률에 근거한 수작업 접지설계는 복잡한 구조와 특성을 갖는 실제 토양을 균일한 매질로 등가화하는 절차를 필요로 한다. 본 논문에서는 미얀마 500 kV 송전철탑 수작업 접지설계를 위하여 수평다층토양을 균일매질로 등가화하는 절차를 제시하였다.

  • PDF

Development of Pulley Type Running Board for Wiring Work of Overhead Transmission Line (송전선로 가선공사용 활차형 런닝보드 개발)

  • Min, Byeong-Wook;Baik, Seung-Do;Jang, Suk-Han;Wi, Hwa-Bog;Rah, Won-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.80-82
    • /
    • 2005
  • There is a method for stringing conductors which is connected to a wire over transmission towers by helicopter or human power and the wire and conductors are pulled by an engine puller. The length of one string section is usually 4-6 km and 2-4 conductors are strung at the same time with a single wire. A tensioner is used to maintain the sag and a running board is installed between the wire and conductors to prevent the rotation of conductors but the variance in topology, the line angle and unequal wiring tension between conductors causes conductor rotation damage or the conductor connection point to breakaway when the pulley is passed. This paper presents a method to prevent conductor rotation during stringing by inserting a pulley in the running board and equally maintaining conductor tension by sling wire after developing and testing.

  • PDF