• Title/Summary/Keyword: tower-line system

Search Result 99, Processing Time 0.034 seconds

Development of a Mobile Tower-yarder with Tractor (I) - Design and Manufacture - (트랙터부착형 타워집재기 개발(I) - 설계 및 제작-)

  • Park, Sang-Jun;Kim, Bo-Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This study was conducted to develop a mobile tower-yarder with tractor for agriculture and forestry that is the efficient yarder in steep terrains, thinning operation and small scale logging operation. It was designed and manufactured that the power source of tower-yarder is equiped three hydraulic pump connected to PTO of tractor, and three hydraulic pump is used to operate the four motor for drum, the cylinder for clutch of interlocker, the cylinder for tower expanding and the out-rigger cylinder. It was to adopt the running skyline system and the inter-lock function, and to equip the double capstan drum, the storage drum and the clutch for interlock in the development of tower-yarder. It was to develop the tower-yarder which the winch torque of double-capstan drum, the traction force of double-capstan drum, the number of rotation of double-capstan drum and the line speed is $191kg{\cdot}m$, 1,910 kgf, 220.5 rpm and 138.5 m/min, respectively. And it was known that the optimum flange diameter of the main and haulback storage drum is about 360 mm and about 460 mm in order to storage the main line length of 250m and the haulback line length of 450 m. The carriage was made to adopt the running skyline system and to equip the lock function in order to the convenience of chocking and the fall down preventing of tree. It was provided to develop the wire remote controller for the inter-lock function, the convenience of control and the efficiency of yarding. In development process, this tower-yarder was attached the 3-point linkage hitch equipment and the tire wheel for the traction and moving of tower-yarder. Also, it was equipped that the out-rigger and the guy line in order to raise the safety and efficiency of yarding of tower-yarder.

An investigation of the Photospheric and Chromospheric Layers of Sunspots

  • Kim, Hyun-Nam;Solanki, Sami. K.;Lagg, Andreas;Kim, Kap-Sung;Choe, G.S.;Kwon, Yong-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.95.2-95.2
    • /
    • 2011
  • The most powerful technique for deducing the magnetic structure of the Sun is spectro-polarimetry. Detailed measurements of the polarization signal of the spectral lines (Stokes vector) allow us to infer the physical conditions in the solar atmosphere prevailing during the line formation. Inversion codes are the main tool to extract this information from the Stokes spectra. This study will focus on measurements of the chromospheric He I 1083.0 nm triplet and the photospheric Si I 1082.7 nm line. A spectropolarimetric data set of sunspots, obtained with the German Vacuum Tower Telescope (VTT) at the Teide observatory on Tenerife, is analyzed using an inversion technique. We will introduce the German Vacuum Tower Telescope and the inversion code HeLix, and will show data sets that are analyzed by HeLix.

  • PDF

Analysis of Conductive Interference nearby High Voltage Power Lines under Fault Condition (송전선로 지락시 철탑 인근의 대지전위간섭 해석모델)

  • Choi, J.K.;Lee, W.K.;Ryu, H.Y.;Shin, B.H.;Son, K.M.;Kim, T.Y.;Hwang, G.C.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.466-467
    • /
    • 2008
  • In case of a line-to-ground fault at transmission lines, a portion of fault current will flow into the earth through the footings of the faulted tower causing electrical potential rise nearby the faulted tower footings. In this situation, any buried pipelines or structures nearby the faulted tower can be exposed to the electrical stress by earth potential rise. Although many research works has been conducted on this phenomena, there has been no clear answer of the required separation distance between tower footings and neary buried pipeline because of its dependancy on the soil electrical charactersics of the concerned area and the faulted system.

  • PDF

Development of the Technical Calculation System for Transmission Line in Myanmar (미얀마 송전선로 설계 기술계산시스템 개발)

  • Baik, Seung-Do;Min, Byeong-Wook;Kim, Jong-Hwa;Shin, Tai-Woo;Kim, Sae-Hyun;Park, Jae-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.632-634
    • /
    • 2005
  • Korea takes part in overseas business by use of accumulated advanced technology through construction of the worlds first 765kV double circuit transmission system designed with pure local technology. 'Development Study on the Power System Network Analysis in Myanmar' was received in the year 2001 and was completed in the year 2002. The following project,'Feasibility Study and Basic Designs for the 500kV Transmission System in Myanmar' has been in progress since January, 2004. With regards to this project the master plan for the Myanmar long term power system was submitted in January 2005, and now the basic designs for the 500kV transmission system construction are in progress. Technical data for the design of the transmission line is calculated using a very complex numerical formula that is almost impossible to be completed by hand. So the transmission technical calculation system was developed to calculate and support Myanmar technical data for the design of transmission line with respect to factors such as wind prossure load, tower design data conductor design data and insulator design data on the basis of weather conditions for the Myamar transmission line design area of the Myanmar 500kV trans- mission line construction basic design.

  • PDF

Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

  • Chuang, Zhenju;Liu, Shewen;Lu, Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.367-375
    • /
    • 2020
  • This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.

Characteristics of Vertical Variation of Wind Resources in Planetary Boundary Layer in Coastal Area using Tall Tower Observation (타워 관측 자료를 이용한 연안 대기 경계층 내 바람 자원의 연직 변동 특성)

  • Yoo, Jung-Woo;Lee, Hwa-Woon;Lee, Soon-Hwan;Kim, Dong-Hyeok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.632-643
    • /
    • 2012
  • Analysis of wind resources in Planetary Boundary Layer (PBL) using long term observation of tall tower located near coast line of the Korean Peninsula were carried out. The data observed at Pohang, Gunsan and Jinhae are wind, temperature and relative humidity with 10 minute interval for one year from 1 October 2010. Vertical turbulence intensity and its deviation at Pohang site is smaller than those of other sites, and momentum flux estimated at 6 vertical layers tend to show small difference in Pohang site in comparison with other sites. The change of friction velocity with atmospheric stability in Pohang is also not so great. These analysis indicate the mechanical forcing due to geographical element of upwind side is more predominant than thermal forcing. On the other hand, wind resources at Gunsan and Jinhae are mainly controlled by thermal forcing.

Shenzhen Rural Commercial Bank Headquarters: an Iconic Tower Defined by the Integration of Architecture, Structure and Sustainability Goals

  • Besjak, Charles;Thewis, Alexandra
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.1
    • /
    • pp.31-39
    • /
    • 2022
  • The seamless integration of the architecture and structure of a tall building plays a key role in establishing a recognizable and iconic design. The structural system developed for Shenzhen Rural Commercial Bank Headquarters (SRCBH) utilizes enhanced structural innovations unique to the tower's geometry to improve structural and sustainability performance. SRCBH utilizes a steel diagrid system pulled outside of the enclosure line with diaphragm forces resolved primarily by corner diagonal beams. During the design process the structural systems underwent performance based design and optimization for wind and seismic loading. Resiliency was prioritized for structural design as well as fire resistance. More closely integrating the structure of a building with its architecture and sustainability goals can lead to unique and innovative towers with a timeless expression.

Development of the Transmission Line Design System for Overseas Projects (해외사업용 송전선로 설계시스템 개발)

  • Min, Byeong-Wook;Kim, Jong-Hwa;Choi, Seok-June;Bang, Hang-Kwon;Choi, Han-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.129-131
    • /
    • 2006
  • KEPCO constructed the first 765kV 2 circuit transmission line in the world with its home grown technologies. Through this 765kV transmission system project, KEPCO accumulated experience and technologies related to the 765 kV power system. Based on the successful completion of the 765kV transmission project, KEPCO is conducting overseas business by using its abundant experience and know-how. In particular, KEPCO developed the training course for power system, called the ATT (Advanced Transmission Technology) training courses for overseas business, especially for developing countries. Therefore, KEPCO developed the "Transmission line design system for overseas projects". This system supports the calculation of wind pressure load, tower design, wire selection, insulation design, etc. by applying the meteorological data of foreign countries and design standards. And this system is applied to the training program so that the trainees can design the optimal transmission line for their own countries.

  • PDF

A study on transient stability of 345 KV power transmission line (345KV 송전선의 과도안정도계산 I)

  • 이재숙
    • 전기의세계
    • /
    • v.18 no.1
    • /
    • pp.24-29
    • /
    • 1969
  • This is preliminary study concerning the future construction and operation of 345KV power transmission line in Korea which will be added to the existing 161KV power system by the end of 1970 in order to increase the power carrying capacity between Seoul and Pusan area; 350 kilo meters aparts, in accordance with the ambitious second five years power development schedule of Korea Electric Company. The result of this study says that an intermidiate switching station should be installed at the middle position of the line to improve the transient stability of the system, considerable amount of capacitors or synchronous condenser are to be installed to reduce the voltage drop at receving end of line during the heavy load hours, and also in some measure to avoid the voltage rise by self-excitation of power generators during the light load hours and while energizing the line. This is the first attempt to realize the EHV power transmission line in Korea so that the additional study is necessary on the kind and size of conductors, the necessary number of insulators and the suitable clearance distances between conductor and steel tower or earth from the technical and economical view points. These are necessary steps to be taken by the writer before getting into the calculation on the transient stablity of the power system.

  • PDF

Development and application of construction monitoring system for Shanghai Tower

  • Li, Han;Zhang, Qi-Lin;Yang, Bin;Lu, Jia;Hu, Jia
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1019-1039
    • /
    • 2015
  • Shanghai Tower is a composite structure building with a height of 632 m. In order to verify the structural properties and behaviors in construction and operation, a structural health monitoring project was conducted by Tongji University. The monitoring system includes sensor system, data acquisition system and a monitoring software system. Focusing on the health monitoring in construction, this paper introduced the monitoring parameters in construction, the data acquisition strategy and an integration structural health monitoring (SHM) software. The integration software - Structural Monitoring/ Analysis/ Evaluation System (SMAE) is designed based on integration and modular design idea, which includes on-line data acquisition, finite elements and dynamic property analysis functions. With the integration and modular design idea, this SHM system can realize the data exchange and results comparison from on-site monitoring and FEM effectively. The analysis of the monitoring data collected during the process of construction shows that the system works stably, realize data acquirement and analysis effectively, and also provides measured basis for understanding the structural state of the construction. Meanwhile, references are provided for the future automates construction monitoring and implementation of high-rise building structures.