• Title/Summary/Keyword: tower-crane

Search Result 116, Processing Time 0.026 seconds

Risk Assessment for Hazardous Construction Work Recognized by Workers (건설위험직종 작업자의 위험체감도 평가)

  • Son, Ki-Sang;Lee, Shin-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.67-72
    • /
    • 2006
  • This study is to investigate the related materials such as domestic law regulation, research paper, research report, and the other material, and to suggest suitable counter measures, to find out hazard degree for its works of workers and work place through direct survey, in order to determine risk score of each hazardous work which is designated by the Government, without consideration of labour's consciousness against risk level at a site. Therefore, a new questionnaire survey related to the decision of risk level are made and distributed to find out what risk level each worker recognizes. Also, the authors tried to approach reasonable conclusions after discussing reasonability of qualification standard and improving ideas of worker at hazardous work places with worker, faculty member, H&S manager, labour union. And the results show hazard degrees by each work kind of the above: 3.75 for working with machinery, 3.7 for steel structure, 3.5 for operation of tower crane, 3.51 for retaining wall, 3.85 for form work, 3.46 for scaffolding are obtained. This quantified risk can be applied to establishing a reasonable system to keep safe against hazardous works.

Free Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달 강성계수법에 의한 격자형 구조물의 자유 진동 해석)

  • 문덕홍;최명수;강화중
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.361-368
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful tool for structural analysis. However, it is necessary to use a large amount of computer memory and computation time because the FEM resuires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For overcoming this problem, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient which is related to force and displacement vector at each node. In this paper, the authors formulate vibration analysis algorithm for a complex and large lattice type structure using the transfer of the nodal dynamic stiffness coefficient. And we confirmed the validity of TSCM through numerical computational and experimental results for a lattice type structure.

  • PDF

Cost Analysis of the Structural Work of Green Frame

  • Joo, Jin-Kyu;Kim, Sun-Kuk;Lee, Goon-Jae;Lim, Chae-Yeon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.401-414
    • /
    • 2012
  • The adoption of Green Frame is expected to provide economic benefits, since construction costs are reduced by the in-situ production of precast concrete column and beam. The cost reduction can ultimately be realized by saving transportation costs and the overhead and profit of PC plants. The cost structure of Green Frame, which is built up using composite precast concrete members, is similar to that of a bearing-wall structure, but the difference in construction process has resulted in some cost differences for a few items. In particular, production and installation is the principal work involved in Green Frame made by precast concrete members, while form and concrete work is the principal work for a bearing-wall structure. As such, the rental time and fee for a tower crane should be compared through time analysis. To verify reliability, this study focused on developed residential projects to estimate the construction costs. Through this analysis, it was found that the costs of Green Frame were 1.57% lower than the costs of bearing-wall structure. The results of this study will help in the development of a management plan for the structural work of Green Frame.

An Attitude Control of an Unstructured Object with Gyro Actuator (자이로 구동장치를 이용한 공중 물체의 자세 제어)

  • Chung, Young-Gu;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.563-565
    • /
    • 1999
  • In this paper, we control attitude of an unstructured object with gyro actuator. It is well known that the attitude control of an object hanging with wire is not easy using usual actuators. Even though an actuator such as a fan can be used for control of the object, it is difficult to meet a desired control objectives. We, because of these reasons, make a gyro actuator with two motors. The first motor is responsible for spinning the wheel at high speed and the second motor is used to turn the inner gimbal. Applying the torque to the second motor, which results in the turn of the outer gimbal, torque about the vertical axis will be obtained while the wheel of the gyro is spinning constantly. This torque is used to control the attitude of the object attached. Gyro actuator utilize control unstructured object such as I-beam carrying by tower crane, and isolate construction workers from the dangerous environments. We derive a relationship of wheel and its motor, find a proper capacity of wheel motor in order to rotate a wheel. Through experiments of attitude control, we show to obtain desired control objectives.

  • PDF

Forced Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 격자형 구조물의 강제진동 해석)

  • 문덕홍;최명수
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.949-956
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful method for structural analysis lately. However, it is necessary to use a large amount of computer memory and computational time because the FEM requires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For analyzing these structures on a personal computer, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient matrix which is related to force and displacement vector at each node. And we suggested TSCM for free vibration analysis of complex and large lattice type structures in the previous report. In this paper, we formulate forced vibration analysis algorithm for complex and large lattice type structures using extened TSCM. And we confirmed the validity of TSCM through computational results by the FEM and TSCM, and experimental results for lattice type structures with harmonic excitation.

  • PDF

Production of Precast Concrete using Eco-friendly Lightweight Concrete (친환경 경량콘크리트를 이용한 프리캐스트 콘크리트 제작)

  • Lee, Soo-Hyung;Lee, Han-Baek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.179-180
    • /
    • 2016
  • This study has a purpose of producing precast concrete for rapid construction of urban railway system. However, previous precast concrete has problem of its weight itself and there has been a keen interest in effect of carbon emission reduction and eco-friendly in our society. Therefore, in order to solve these two problems, we are about to produce precast concrete using lightweight aggregate and eco-lightweight concrete, with which much mineral had been replaced. As a result, we could confirm that it was possible to produce RMC B/P production satisfying the requirement performance of eco-lightweight concrete, which is replaced with a great amount of mineral for reduction of precast concrete's weight and environmental performance. Also, by confirming the possibility of producing precast concrete which lightweight concrete is used, if producing precast concrete by using eco-lightweight concrete, it would be effective to avoid destruction of environment and much useful to use multiple tower crane when constructing. Afterward, we will proceed our study by constructing precast concrete at which eco-lightweight concrete is used for continuous quality improvement.

  • PDF

A study on the Inclination measurement with tilt sensor on the tower crane (기울기 센서를 이용한 타워크레인의 기울어짐 측정방안에 관한 연구)

  • Kang, Shin-Hyuk;Kong, Jung-Shik;Kwon, Oh-Sang;Jang, Mun-Suk;Shin, Woon-Chul;Lee, Dong-Kwang;Jang, Chol-Woong;Chung, Ki-Ho;Yeom, Moon-Jin;Lee, Eung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.91-92
    • /
    • 2007
  • 산업현장에서 사용되는 타워크레인의 전도 상황을 측정하기 위한 시스템은 현재 풍속계에 의존하고 있는데, 풍속계의 경우 타워크레인의 기울어짐을 정략적으로 측정할 수 없는 센서이기 때문에 정확한 상황 판단이 어렵고, 운전자나 관리자의 판단이 필요한 문제를 갖는다. 그래서 보다 정확한 정도를 측정하기 위해 타워크레인의 지브(jib) 휘어짐과 타워축의 휘어짐을 측정하여 정량적인 위험 상황을 경보 할 수 있는 전도 측정 장치가 필요하기 때문에 타워크레인의 좌/우 및 상/하 기울어짐에 대한 정량적인 측정이 가능한 기울기 센서를 이용한 센서 시스템을 구축하고, 타워크레인의 동작 위험성을 알리기 위한 경보 기법을 구축 했다.

  • PDF

Experimental Investigation of Rotation-Up Erection for Keel Truss Spatial Structures (Rotation-Up 공법에 의한 킬 트러스 대공간 구조물의 Erection 실험에 관한 연구)

  • Kim, Cheol-Hwan;Chae, Won-Tak;Baek, Ki-Youl;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.57-66
    • /
    • 2013
  • There are a number of construction methods to build spatial structures such as erection method, Element method, Block method, Sliding method, Lift-up method and Push-up method. These methods are uneconomical and low accuracy, and require long construction duration because of a need of a scaffold or a tower crane to build spatial roof frame. In this study, the construction method to erect a truss structure was proposed as an economical and easy installation method. The proposed method has end hinges of keel truss and winches with horizontal cable. This method makes safe and accurate production and reduces construction duration because trusses are built on the floor or supporter. The goal of this study is to verify the validity of construction method by building scale model using the proposed method.

Rope simulation for VR tower crane training (가상 현실 타워크레인 훈련을 위한 로프 시뮬레이션)

  • Jung, Hee-Ji;Kim, Kwang-Tae;Jo, Dongsik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.538-539
    • /
    • 2019
  • 타워크레인은 조선, 건설 등 산업 현장에서 중량물 운반 운전을 위한 도구로 사람이 수동 작업으로 대부분 수행된다. 이러한 타워크레인 운전 훈련 과정은 훈련 실습자에게 장시간 교육하기에 비효율적 뿐 아니라 위험한 작업이므로 최근에는 가상 훈련 시뮬레이션을 통해 이루어 지고 있다. 이러한 가상 타워크레인 시뮬레이션을 구현하기 위해서는 기후환경, 중량물, 줄걸이와 같은 외부적 요인도 중요하지만 타워크레인의 운반 중량물과 직접적으로 연결이되는 로프를 정밀하게 표현하는 것이 중요하다. 하지만, 현재 개발된 대다수의 로프는 단면이 원통형을 띄고 있어 물리적인 요인이 작용하였을 때, 회전축이나 물리적인 형태를 가늠하기가 어렵다. 그러므로, 가상의 타워크레인 시뮬레이션 로프를 실제 타워크레인 슬링벨트와 유사한 면의 형태를 가지고 구축하여 실 환경과 유사한 환경에서 숙련된 타워크레인 시뮬레이션을 훈련하기 위한 로프 시뮬레이션이 필요하다. 따라서, 본 논문에서는 로프 시뮬레이션이 실제와 동일한 형태의 슬링벨트를 제공할 뿐만 아니라 로프의 면 형태 구현하고, 물리시뮬레이션을 통해 로프의 사실적인 움직임을 나타낼 수 있는 가상현실(VR) 기반 훈련 로프 시뮬레이션을 제시한다.

Research on Facility Layout of Prefabricated Building Construction Site

  • Yang, Zhehui;Lu, Ying;Zhang, Xing;Sun, Mingkang;Shi, Yufeng
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.42-51
    • /
    • 2017
  • Due to the high degree of mechanization and the good environmental benefits, the prefabricated buildings are being promoted in China. The construction site layout of the prefabricated buildings has important influence on its safety benefit. However, few scholars have studied the safety problem on it. Firstly, in order to give a follow-up study foreshadowing the characteristics of prefabricated buildings are analyzed, the research assumptions are given and three types of safety buffers are established. And then a mult-objective model for the prefabricated buildings site layout is presented: taking into account the limits of noise, the coverage of the tower crane and the possibility of exceeding boundaries and overlapping, the constraints are and designed established respectively; Based on the improved System Layout Planning (SLP) method, the efficiency\cost\safety interaction matrices among the facilities are also founded for objective function. For the sake of convenience, a hypothetical facility layout case of the prefabricated building is used, the optimal solution of that is obtained in MATLAB with particle swarm algorithm (PSO), which proves the effectiveness of the model presented in this paper.

  • PDF