• 제목/요약/키워드: touch sensitivity

검색결과 43건 처리시간 0.031초

고감도 터치스크린 감지를 위한 양방향 센싱과 전압쉬프팅을 이용한 센싱 기법 (Dual Sensing with Voltage Shifting Scheme for High Sensitivity Touch Screen Detection)

  • 서인철;김형원
    • 전자공학회논문지
    • /
    • 제52권4호
    • /
    • pp.71-79
    • /
    • 2015
  • 본 논문에서는 상호 정전용량 터치스크린의 single line sensing 방법에서의 단점을 해결하기 위한 성능향상 구조를 제안한다. 제안 구조는 Dual sensing 기법과 voltage shifting 기법을 도입하여 센싱 신호의 노이즈를 효과적으로 제거하고 터치 유무의 센싱 신호 차이를 증가시킨다. Dual sensing 기법은 구동신호의 양방향 엣지를 사용하여 integration 속도를 2배로 증가시켜 감지시간을 감소시킨다. Voltage shifting은 ADC의 입력신호 동작범위를 최대화하여 신호 대 노이즈비 (SNR)를 개선한다. 23" 대형 상용 터치스크린을 이용하여 simulation 및 측정한 결과로 제안된 센싱기법은 43dB의 SNR 성능을 가지며, 기존 방식 대비 2배의 스캔 속도를 제공하여 대형 터치스크린을 위한 적합한 기술임을 보인다. 제안된 센싱기법은 현재 매그나칩 CMOS 0.18um 공정으로 TSP 컨트롤러칩으로 구현되었다.

볼 기반의 모바일 햅틱 인터페이스 디자인 (Design of Ball-based Mobile Haptic Interface)

  • 최민우;김정현
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.122-128
    • /
    • 2009
  • 이 논문에서는 모바일 환경에서 촉각적 사용자 체험 (User Experience)을 향상 시킬 수 있도록 디자인된 새로운 방식의 핸드헬드 볼 기반의 햅틱 인터페이스 "TouchBall" 을 소개하고 그 성능을 평가한다. 작은 모바일 디바이스(모바일 폰, PDA, PMP 등)에 적당하도록 볼 기반의 기계적 메커니즘을 사용하여 작은 회전력으로도 높은 감도의 다양한 촉감을 손에 전달할 수 있도록 구성되어 있다. 제안하는 인터페이스를 적용한 프로토타입 버전을 구현하였고, 정신물리학적 실험을 통해 사람의 감각 인식의 가장 기본적인 척도가 되는 감지 역치를 측정하였다. 그리고 구현 가능한 다양한 촉각 패턴들의 인식강도를 절대적 강도추정 방법으로 측정하여 정확도와 인식강도를 알아보고 그 응용 가능성을 찾아보았다.

  • PDF

A Study on Touchless Panel based Interactive Contents Service using IrDA Matrix

  • Lee, Minwoo;Lee, Dongwoo;Kim, Daehyeon;Ann, Myungsuk;Lee, Junghoon;Lee, Seungyoun;Cho, Juphil;Shin, Jaekwon;Cha, Jaesang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권2호
    • /
    • pp.73-78
    • /
    • 2015
  • Touch panel is mainly applied to pressure type touch panel but it occur a low recognition rate and error during long-term use. So, it is partly applied to capacitive touch panel to compensate for these problems but it also can occur a same problems via pollutions. Touch technology has developed a various method but it is not used because of high costs and difficult installation process. So, in this paper, we proposed an input method of touchless panel using IrDA matrix. This method is conducted using an IrDA Matrix composed of depth sensor. It is possible to offer a various contents for multi user. The proposed technology need a development of a high sensitivity sensing method and high-speed processing method of position information for Seamless operation control. And, it is required high-precision drive technology. Also, we proposed a Seamless user recognition for interactive contents service through a touchless panel using IrDA matrix.

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF

아동 미각교육을 위한 쌀 Kit 개발 및 이를 활용한 미각 특성조사 (The Development of a Taste Kit for Education and Research into Sensory Characteristics)

  • 김미혜;정혜경
    • 한국식생활문화학회지
    • /
    • 제28권6호
    • /
    • pp.585-593
    • /
    • 2013
  • This study was designed to measure taste sensitivity and the five basic senses by an educational classification instrument. The instrument was a rice kit that could use samples in a dry powder form or oil extract after long-term storage To test for taste, sucrose, salt, citric acid, and quinine sulfate were made at different concentrations and taste sensitivity was measured on a scale from level 1 to level 5. To obtain baseline data, an inspection tool for the five senses was used and randomly applied on 101 schoolchildren in the third and fourth grade in the city of Cheonan in Korea. The inspection tool was composed of 17 questions; 5 questions regarding visual characteristics and three questions each for characteristics regarding taste, hearing, smell, and touch. The average age of the schoolchildren was 9.5 years old and there were 49 third grade students (9 years of age), and 52 fourth grade students (ten years of age). There were slightly more male students than female students, 56 (55.4%) compared to 45 (44.6%), respectively. The average height of female students was higher than that of males, but the average BMI (body mass index) of the male students was slightly higher than that of female students (18.28 compared to 18.09, respectively). Female students were slightly more sensitive to salty tastes than male students (2.8 compared to 2.5, respectively). In the score distribution for each sense, touch sense was the highest at 7.59, sight sense was 7.49, hearing sense was 5.43, smell sense was 5.24, and taste sense was lowest at 3.69. Therefore, schoolchildren first tend to recognize and deem important the touch and sight of food before its taste.

스테레오 비전을 이용한 저전력 적외선 멀티 터치스크린 컨트롤러의 설계 (Design of an Infrared Multi-touch Screen Controller using Stereo Vision)

  • 정성완;권오준;정용진
    • 대한전자공학회논문지SD
    • /
    • 제47권2호
    • /
    • pp.68-76
    • /
    • 2010
  • 최근 터치스크린 기술은 인간이 컴퓨터와 대화할 수 있는 주요 도구로서 급진적인 발전을 이루고 있다. 이 사용자 친화적인 인터페이스는 휴대폰에 이어 데스크탑, TV와 같은 대형스크린 시장까지 확산되어가고 있지만 기존의 저항막방식, 정전용량방식, 초음파방식 등은 기술 및 비용문제로 인하여 중 대형스크린에 적용하기 힘들다. 따라서 본 논문에서는 적외선과 라인스캔 이미지센서를 이용하여 간단하고 저렴한 비용으로 중 대형스크린에 적용할 수 있는 광학 영상 터치스크린 솔루션을 소개하고 이 기술이 갖는 문제점과 해결방안을 제시한다. 멀티 포인트를 추출하기 위한 주요 알고리즘은 범용프로세서를 이용하여 구현 시 약 34ms(29fps)가 소요되었으며 이는 휴먼인터페이스 디바이스로 사용되기에는 불충분하였다. 이를 해결하기 위하여 본 논문에서는 신호처리 및 좌표추출연산을 위한 하드웨어를 설계하여 성능을 향상시키고 광학 영상 터치스크린이 갖는 문제점을 소프트웨어에서 효율적으로 처리할 수 있도록 하였다. 설계한 터치스크린 컨트롤러의 PSM(Power Saving Mode)은 1.8Wh의 적외선 소비에너지를 0.0072Wh 까지 개선하였으며 60인치 대형스크린에서 2개의 실제 좌표를 200fps 속도로 연산해낸다.

3차원 측정기를 위한 원자간력 프로브 성능 연구 (A Study on the Performance of Atomic Force Probe for Coordinate Measuring Machines)

  • 정판곤;배규현;홍성욱
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.75-80
    • /
    • 2008
  • This paper presents an atomic force probe for triggering coordinate measuring machines(CMMs). A rigorous comparison is made between touch trigger probe and atomic force probe for CMMs. Typical CMMs(touch trigger probe based CMMs) often lead to some errors associated with object curvature and difference in triggering sensitivity. Their applicability is limited only to hard objects. The aim of this work is to develop a trigger sensor for CMMs using atomic force. In order to show the applicability of atomic force as a trigger sensor, a cylindrical shape is measured with a CMM and an atomic force microscope. Three different touch probe heads with different ball sizes are tested. The experiments show that smaller ball provides better results for curved objects. The experimental results also show that the performance of atomic force as a trigger sensor is about that of the smallest ball probe. In addition, experiments are also performed to measure soft objects. Finally, this paper suggests and verifies a trigger sensor using atomic force for CMMs.

표면 MEMS 기술을 이용한 고온 용량형 압력센서의 특성 (Characteristics of Surface Micromachined Capacitive Pressure Sensors for High Temperature Applications)

  • 서정환;노상수;김광호
    • 한국전기전자재료학회논문지
    • /
    • 제23권4호
    • /
    • pp.317-322
    • /
    • 2010
  • This paper reports the fabrication and characterization of surface micromachined poly 3C-SiC capacitive pressure sensors on silicon wafer operable in touch mode and normal mode for high temperature applications. FEM(finite elements method) simulation has been performed to verify the analytical mode. The sensing capacitor of the capacitive pressure sensor is composed of the upper metal and the poly 3C-SiC layer. Measurements have been performed in a temperature range from $25^{\circ}C$ to $500^{\circ}C$. Fabrication process of designed poly 3C-SiC touch mode capacitive pressure sensor was optimized and would be applicable to capacitive pressure sensors that are required high precision and sensitivity at high pressure and temperature.

시작 차량의 실내 감성 향상에 관한 연구 (A Study on Enhancement of Human Sensitivity for Interior of Prototype Vehicles)

  • 최재원;양화준;이석희
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.124-131
    • /
    • 2003
  • As the new model development lead time becoming shorter and the market requirements becoming more strict, automobile manufacturer begins to utilize 3-dimensional CAD system based techniques such as DMU (Digital Mock-up), Rf (Rapid Prototyping), VE (Virtual Engineering) to meet the market trends. But, no satisfactory utilities have been developed yet, to represent emotional properties such as embossment on the surface of interior parts, touch originated from material characteristics in virtual environment, so it is inevitable to manufacture prototype parts to verify actual feeling which passengers feel in automobile. This paper suggests a methodology to enhance the human sensitivity via embodying embossment on the surface of prototype car interior trim without deterioration of dimensional accuracy using RIM (Reaction Injection Molding) and thermoforming method.

최소 침습 수술을 위한 유연한 촉각 센서 (Flexible tactile sensor for minimally invasive surgery)

  • 이준우;유용경;한성일;김천중;이정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1229-1230
    • /
    • 2015
  • Monitoring of mechanical properties of tissues as well as direction/quantities of forces is considered as an essential way for disease diagnosis and haptic feedback systems. There are extensively increasing interests for measuring normal/shear force and touch feelings, especially for surgery systems. Highly sensitive and flexible tactile sensor is needed in palpation for detecting cancer cyst as well as real time pressure monitoring in minimally invasive surgery (MIS). Importantly, MEMS technique with miniaturized fabrication technique is essential for the on-chip integration with biopsy and biomedical grasper. Here, we propose the flexible tactile sensor with high sensitivity based on piezoresistive effect. We analyzed the sensitivity according to the pressure and directions and showed the ability of discrimination of the different materials surfaces, illustrating the feasibility of the flexible tactile sensor for biomedical grasper by mimicking human skin.

  • PDF