• 제목/요약/키워드: total stresses

검색결과 375건 처리시간 0.025초

저 레이놀즈수 유동장에서의 난류모델에 관한 연구 (The Study of Turbulence Model of Low-Reynolds Number Flow)

  • 유철;이정상;김종암;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.172-177
    • /
    • 2004
  • In the present work, we have interests on the modification of parallel implemented with MPI(Message Passing Interface) programming method, 3-Dimensional, unsteady, incompressible Navier-Stokes equation solver to analyze the low-Reynolds number flow In order to accurate calculation aerodynamic coefficients in low-Reynolds number flow field, we modified the two-equation turbulence model. This paper describes the development and validation of a new two-equation model for the prediction of flow transition. It is based on Mentor's low Reynolds $\kappa-\omega$ model with modifications to include Total Stresses Limitation (TSL) and Separation Transition Trigger (STT)

  • PDF

Numerical Study of Three-Dimensional Compressible Flow Structure Within an S-Duct for Aircraft Engine Inlet

  • Cho, Soo-Yong;Park, Byung-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.36-47
    • /
    • 2000
  • Three-dimensional compressible turbulent flow fields within the passage of a diffusing S-duct have been simulated by solving the Navier-Stokes equations with SIMPLE scheme. The average inlet Mach number is 0.6 and the Reynolds number based on the inlet diameter is $1.76{\times}10^6$ The extended $k-{\varepsilon}$ turbulence model is applied to modeling the Reynolds stresses. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with experimental wall static-pressure, total-pressure fields, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and streamlines in the symmetric plane are presented. The computed results depict the interaction between the low energy flow by the flow separation and the high energy flow by the reversed duct curvature. The computed results obtained using the extended $k-{\varepsilon}$ turbulence model.

  • PDF

불포화토의 거동예측을 위한 구성식 개발(I) -불포화토의 거동특성 연구- (Development of Constitutive Model for the Prediction of Behaviour of Unsaturated Soil(I) -Study of Characteristics of Unsaturated Soil-)

  • 송창섭;장병욱
    • 한국농공학회지
    • /
    • 제36권4호
    • /
    • pp.87-94
    • /
    • 1994
  • The aim of the work descrihed in this paper is to study a characteristics of an unsaturated soil for the different matric suctions. To this end, a series of suction controlled isotropic and triaxial compression tests is conducted on silty sands. Matric suction is controlled by the axis translation technique using high air entry ceramic disk. Total volume change, air and water volume changes are measured by the device made for the experiment. The specimens are compacted using a half of Proctor compaction energy and with the water contents of 5% drier than the optimum moisture contents. Isotropic compression and triaxial compression tests are conducted on the specimen at each equilibrium state of matric suction. From test results, volume changes and deviator stresses are analyzed at each state and their relationships are formulated.

  • PDF

A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading

  • Vinyas, M.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.519-535
    • /
    • 2017
  • In this article, static analysis of a magneto-electro-elastic (MEE) beam subjected to various thermal loading and boundary conditions has been investigated. Influence of pyroeffects (pyroelectric and pyromagnetic) on the direct quantities (displacements and the potentials) of the MEE beam under different boundary conditions is studied. The finite element (FE) formulation of the MEE beam is developed using the total potential energy principle and the constitutive equations of the MEE material taking into account the coupling between elastic, electric, magnetic and thermal properties. Using the Maxwell electrostatic and electromagnetic relations, variation of stresses, displacements, electric and magnetic potentials along the length of the MEE beam are investigated. Effect of volume fractions, aspect ratio and boundary conditions on the direct quantities in thermal environment has been determined. The present investigation may be useful in design and analysis of magnetoelectroelastic smart structures and sensor applications.

修正죔맞춤 방법 을 이용한 複合圓통 의 彈性負荷能力 의 증대 (Increments of Elastic Lad Carrying Capacity of Compound Cylinder by Using Modified-Shrink-Fit Method)

  • 정성종;홍창선
    • 대한기계학회논문집
    • /
    • 제7권3호
    • /
    • pp.335-343
    • /
    • 1983
  • Modified-Shrink-Fit(MSF) method of compound cylinder is studied to increase elastic load carrying capacity (ELCC) of pressure vessel. The autofrettage and the shrink-fit processes are used to study the MSF process. Theoretical analyses based on the Tresca yield criterion, Hencky's total strain theory and elastic linearly strain-hardening material are carried out to derive closed form solutions. Experimental results are compared with theoretical results with various diameter ratios between outer (SM45C) and inner (SM20C) bloc cylinder. For various diameter ratios, increments of ELCC have errors in strains vs. internal loading pressures between experimental and theoretical results. But experimental results show good agreements with theoretical results in reyield pressurizing state. The increments of ELCC of compound cylinder manufactured by the MSF process is proved by measuring the residual stresses.

Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment

  • Vinyas, M.;Kattimani, S.C.
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.351-367
    • /
    • 2017
  • In this article, the multiphysics response of magneto-electro-elastic (MEE) cantilever beam subjected to thermo-mechanical loading is analysed. The equilibrium equations of the system are obtained with the aid of the principle of total potential energy. The constitutive equations of a MEE material accounting the thermal fields are used for analysis. The corresponding finite element (FE) formulation is derived and model of the beam is generated using an eight noded 3D brick element. The 3D FE formulation developed enables the representation of governing equations in all three axes, achieving accurate results. Also, geometric, constitutive and loading assumptions required to dimensionality reduction can be avoided. Numerical evaluation is performed on the basis of the derived formulation and the influence of various mechanical loading profiles and volume fractions on the direct quantities and stresses is evaluated. In addition, an attempt has been made to compare the individual effect of thermal and mechanical loading with the combined effect. It is believed that the numerical results obtained helps in accurate design and development of sensors and actuators.

반응면 기법을 이용한 항공기 날개 스파 단면적의 최적화 연구 (Aircraft Wing Spar Cross-section Area Optimization with Response Surface Method)

  • 박찬우
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.109-116
    • /
    • 2002
  • The solution of the aircraft wing spar cross-section area optimization problem is obtained by the response surface method. The object function of the problem is wing total weight, design variables are spar cross-section areas, constraints are the conditions that the stresses at the each spar is less than the allowable stress. D-Optimal condition is utilized to obtain the experimental points to construct the response surfaces. D-Optimal experimental points are obtained by the commercial software "Deign-Expert". Response values for the object function and constraints for each experimental point are calculated by the NASTRAN. Response surfaces for object function and constraints are approximated from the response values by the least square method. The optimization solution is obtained by the DOT for the response surfaces of object function and constraints. The optimization results obtained from the response surface are compared with the results obtained by the NASTRAN SOL200.

Simulations using a whole-body biomechanical model

  • 정의승
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1990년도 춘계공동학술대회논문집; 한국과학기술원; 28 Apr. 1990
    • /
    • pp.140-150
    • /
    • 1990
  • Further developments on a dynamic biomechanical model are presented to assess musculoskeletal stresses and human responses. The model being developed is an extension of the Articulated Total Body (ATB) Model, originally developed by Calsapan Corp. for the study of human dynamics during automobile crashes, later adopted to the U.S.Air Force to simulate the reactions of aircrew personnel to such forces typically encountered in various phases of flight operations. Further refinements were introduced by Freivalds and Kaleps(1984) to account for a human neuromusculature. In this study, modelling of active neuromusculature was described and simulations of whole-body human motion were performed using the ATB Model. It indicated the potential of using a muscularized biomechanical model coupled with CAD capabilities to simulate human responses in a variety of industrial settings as well. This will serve as a basis of incorporating computer aided design methods into a muscularized biomechanical models.

  • PDF

균열선단에 링압인 부가에 의한 잔류응력장분포와 피로균열성장지연 (Residual Stress Fields and Fatigue Crack Growth Retardation Induced by Ring-Indentation)

  • 임원균;송정훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.597-602
    • /
    • 2001
  • A method for the retardation of fatigue crack growth using ring indentation at the vicinity of a crack is examined. Residual stresses near crack tip are evaluated using fracture mechanics approach. The motivation is to develop a simple and effective method for obtaining an increase in fatigue lives to total failure of materials with crack. Fatigue testing of aluminum specimen showed that the retardation effects are observed after the application of the method.

  • PDF

고응력 외상에의한 고관절용 세라믹/세라믹 쌍의 비선형 유한요소법 분석 (Non Linear Finite Element Analyses of Ceramic/Ceramic Pairs of Total Hip Replacements Using High Trauma-Like Loads)

  • 다니엘카리요;이수완
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2005년도 추계학술발표회 및 workshop
    • /
    • pp.179-180
    • /
    • 2005
  • Non linear finite element analyses were performed in various configurations of stem-ball head. High stresses were found for the cases when the stem tended to penetrate less into the ball head. An upgraded design of the cone may improve the loading of the ball head to resist trauma-like loading more effectively than manipulating the ball diameter. When the surgeon needs to use small ball heads (i.e. 22 mm), the use of zirconia seems to be appropriate also. After simulating a trauma like loading of the materials, it was found that the deepness of the cone to locate the stem is of major importance for the performance of the device. Further work, considering more sizes for the cone design should be performed in order to determine an optimal depth for the cone in relation to the diameter of the ball head. Also the simulation of contacts pairs including polyethylene and CoCr is important for further research.

  • PDF