Browse > Article
http://dx.doi.org/10.12989/sem.2017.62.5.519

A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading  

Vinyas, M. (Department of Mechanical Engineering, National Institute of Technology Karnataka)
Kattimani, S.C. (Department of Mechanical Engineering, National Institute of Technology Karnataka)
Publication Information
Structural Engineering and Mechanics / v.62, no.5, 2017 , pp. 519-535 More about this Journal
Abstract
In this article, static analysis of a magneto-electro-elastic (MEE) beam subjected to various thermal loading and boundary conditions has been investigated. Influence of pyroeffects (pyroelectric and pyromagnetic) on the direct quantities (displacements and the potentials) of the MEE beam under different boundary conditions is studied. The finite element (FE) formulation of the MEE beam is developed using the total potential energy principle and the constitutive equations of the MEE material taking into account the coupling between elastic, electric, magnetic and thermal properties. Using the Maxwell electrostatic and electromagnetic relations, variation of stresses, displacements, electric and magnetic potentials along the length of the MEE beam are investigated. Effect of volume fractions, aspect ratio and boundary conditions on the direct quantities in thermal environment has been determined. The present investigation may be useful in design and analysis of magnetoelectroelastic smart structures and sensor applications.
Keywords
magneto-electro-elastic; pyroeffects; direct quantities; temperature profiles; static analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ebrahimi, F. and Barati, M.R. (2016), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122, 451.   DOI
2 Gornandt, A. and Gabbert, U. (2002), "Finite element analysis of thermopiezoelectric smart structures", Acta Mechanica, 154, 129-140.   DOI
3 Gupta, V., Sharma, M., Thakur, N. and Singh, S.P. (2011), "Active vibration control of a smart plate using a piezoelectric sensor-actuator pair at elevated temperatures", Smart Mater. Struct., 20, 105023.   DOI
4 Hadjiloizi, D.A., Georgiades, A.V., Kalamkarov, A.L. and Jothi, S. (2013), "Micromechanical modeling of piezo-magneto-thermo-elastic composite structures: Part I Theory", Eur. J. Mech. A/Solid., 39, 298-312.   DOI
5 Hadjiloizi, D.A., Georgiades, A.V., Kalamkarov, A.L. and Jothi, S. (2013), "Micromechanical modeling of piezo-magneto-thermo-elastic composite structures: Part 2-Applications", Eur. J. Mech. A/Solid., 39, 313- 327.   DOI
6 Jandaghian, A.A. and Rahmani, O. (2016), "Free vibration analysis of magneto-electro thermo-elastic nanobeams resting on a Pasternak foundation", Smart Mater. Struct., 25, 035023.   DOI
7 Kattimani, S.C. and Ray, M.C. (2014), "Active control of large amplitude vibrations of smart magneto-electro-elastic doubly curved shells", Int. J. Mech. Mater. Des., 10(4), 351-378.   DOI
8 Kattimani, S.C. and Ray, M.C. (2014), "Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates", Compos. Struct., 14, 51-63.
9 Kattimani, S.C. and Ray, M.C. (2015), "Control of geometrically nonlinear vibrations of functionally graded magneto-electroelastic plates", Int. J. Mech. Sci., 99, 154-167.   DOI
10 Kim, J.Y., Li, Z. and Baltazar, A. (2012), "Pyroelectric and pyromagnetic coefficients of functionally graded multilayered multiferroic composites", Acta Mechanica, 223, 849-860.   DOI
11 Kondaiah, P., Shankar, K. and Ganesan, N. (2012), "Studies on magneto-electro-elastic cantilever beam under thermal environment", Coupl. Syst. Mech., 1(2), 205-217   DOI
12 Kondaiah, P., Shankar, K. and Ganesan, N. (2013), "Pyroelectric and pyromagnetic effects on behavior of magneto-electro-elastic plate", Coupl. Syst. Mech., 2, 1-22.   DOI
13 Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment", Multidisc. Model. Mater. Struct., 3, 461-476.   DOI
14 Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Steadystate analysis of a three-layered electro-magneto-elastic strip in a thermal environment", Smart Mater. Struct., 16, 282-295.   DOI
15 Lage, R.G., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2004), "Layerwise partial mixed finite element analysis of magneto-electro-elastic plates", Comput. Struct., 82, 1293-1301.   DOI
16 Milazzo, A., Orlando, C. and Alaimo, A. (2009), "An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem", Smart Mater. Struct., 18(8), 85012.   DOI
17 Ootao, Y. and Tanigawa, Y. (2005), "Transient analysis of multilayered magneto-electro-thermoelastic strip due to nonuniform heat supply", Compos. Struct., 68, 471-480.   DOI
18 Rahman, N. and Naushad Alam, M. (2015), "Structural control of piezoelectric laminated beams under thermal load", J. Therm. Stress., 38, 69-95.   DOI
19 Pan, E. (2001), "Exact solution for simply supported and multilayered Magneto-Electro-Elastic plates", Tran. ASME, 68, 608-618.   DOI
20 Panda, S. and Ray, M.C. (2008), "Nonlinear finite element analysis of functionally graded plates integrated with patches of piezoelectric fiber reinforced composite", Finite Elem. Anal. Des., 44, 493-504.   DOI
21 Ray, M.C. and Batra, R.C. (2008), "Smart constrained layer damping of functionally graded shells using vertically/obliquely reinforced 1-3 piezocomposite under a thermal Environment", Smart Mater. Struct., 17, 055007.   DOI
22 Ray, M.C., Bhattacharya, R. and Samanta, B. (1994), "Static analysis of an intelligent structure by the finite element method", Comput. Struct., 52, 617-631.   DOI
23 Sharnappa, G.N. and Sethuraman, R. (2010), "Thermally induced vibrations of piezo-thermo-viscoelastic-composite beam with relaxation times and system response", Multidisc. Model. Mater. Struct., 6(1), 120-140.   DOI
24 Sunar, M., Al-Garni, A.Z., Ali, M.H. and Kahraman, R. (2002), "Finite element modeling of thermopiezomagnetic smart structures", AIAA J., 40, 1845-1851.
25 Tauchert, T.R. (1996), "Cylindrical bending of hybrid laminates under thermo-electro-mechanical loading", J. Therm. Stress., 19, 287-296.   DOI
26 Vaezi, M., Shirbani, M.M. and Hajnayeb, A. (2016), "Free vibration analysis of magneto-electro-elastic microbeams subjected to magneto-electric loads", Physica E, 75, 280-286.   DOI
27 Xin, L. and Hu, Z (2015), "Free vibration of layered magnetoelectro-elastic beams by SS-DSC approach", Compos. Struct., 125, 96-103.   DOI
28 Ansari, R., Gholami, R. and Rouhi, H. (2015), "Size-dependent nonlinear forced vibration analysis of magneto-electro-thermoelastic Timoshenko nanobeams based upon the nonlocal elasticity theory", Compos. Struct., 126, 216-226.   DOI
29 Ramirez, F., Heyliger, P.R. and Pan, E. (2006), "Free vibration response of two-dimensional magneto-electro-elastic laminated plates", J. Sound Vib., 292, 626-644.   DOI
30 Annigeri, A.R., Ganesan, N. and Swarnamani, S. (2007), "Free vibration behavior of multiphase and layered magneto-electroelastic beam", J. Sound Vib., 299, 44-63.   DOI
31 Badri, T.M. and Al-Kayiem, H.H. (2013), "Analytical solution for simply supported and multilayered Magneto-Electro-Elastic Plates", Asian J. Sci. Res., 6, 236-244   DOI
32 Beni, Y.T. (2016), "Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling", Mech. Res. Commun., 75, 67-80.   DOI
33 Bhangale, R.K. and Ganesan, N. (2006), "Free vibration of simply supported functionally graded and layered magneto-electroelastic plates by finite element method", J. Sound Vib., 294, 1016-1038.   DOI
34 Biju, B., Ganesan, N. and Shankar, K. (2011), "Dynamic response of multiphase magnetoelectroelastic sensors using 3D magnetic vector potential approach", IEEE Sens. J., 11(9), 2169-2176.   DOI
35 Biju, B., Ganesan, N. and Shankar, K. (2012), "Effect of displacement current in magneto-electro-elastic plates subjected to dynamic loading", Int. J. Mech. Mater. Des., 8(4), 349-358.   DOI
36 Challagulla, K.S. and Georgiades, A.V. (2011), "Micromechanical analysis of magneto-electro-thermo-elastic composite materials with applications to multilayered structures", Int. J. Eng. Sci., 49, 85-104.   DOI
37 Chen, J., Chen, H., Pan, E. and Heyliger, P.R. (2007), "Modal analysis of magneto-electro-elastic plates using the state-vector approach", J. Sound Vib., 304, 722-734.   DOI
38 Chen, W.Q., Lee, K.Y. and Ding, H.J. (2005), "On free vibration of non homogeneous transversely isotropic magneto-electroelastic plates", J. Sound Vib., 279, 237-251.   DOI
39 Daga, A., Ganesan, N. and Shankar, K. (2009), "Transient dynamic response of cantilever Magneto-Electro-Elastic beam using finite elements", Int. J. Comput. Meth. Eng. Sci. Mech., 10, 173-185   DOI