• Title/Summary/Keyword: total required reinforcement

Search Result 46, Processing Time 0.02 seconds

A Study on the Non-combustible Properties of High-density Fiber Cement Composites Mixed with Hemp Fibers (마 섬유 혼입에 따른 고밀도 섬유 시멘트 복합체의 불연 특성 연구)

  • Jang, Kyong-Pil;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.314-320
    • /
    • 2022
  • The function of reinforcing fibers used in building materials is to maintain resistance to bending loads and to function for cracking caused by drying shrinkage. High-density fiber-cement composites are mainly used for linear plates and are used to increase bending resistance. Therefore, tensile properties, bonding strength with cement hydrate, alkali resistance, and the like are required. Recently, as the non-combustible performance has been strengthened, a function to minimize the occurrence of sparks during high-temperature heating has been added. Therefore, the use of organic fibers is limited. In this study, a study was conducted to replace polypropylene used as reinforcing fiber with hemp fiber with excellent heat resistance. Hemp fibers have excellent heat resistance, good affinity with cement, and excellent alkali resistance. Based on the total volume of polypropylene fibers used in the existing formulation, the non-combustible performance was compared and evaluated by using hemp fibers instead of the polypropylene fibers, and basic physical properties such as flexural strength were tested. As a result of conducting a non-combustibility and physical property test using hemp fibers with a fiber length of 7 mm using 2 % and 3 % by weight, it was found that there is no remaining time of the flame, and the flexural strength can be secured at 95 % level of the existing polypropylene fiber.

Development of Robot-Mediated Social Skills Training 'Friendly Friends' Contents for Elementary School Students (로봇을 활용한 초등학생용 사회성 기술 훈련 '사또(사이좋은 또래)' 콘텐츠 개발)

  • Lim, Bo Lyeong;Baek, Ye Eun;Park, Jiyeon
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.8
    • /
    • pp.44-53
    • /
    • 2022
  • The purpose of this study is to plan and develop contents for training social skills using robots for elementary school students. Seven functions (guiding activity, providing reinforcement, guiding students behavior, team setting, presenting team order, timer setting, and checking scores) were developed by analyzing functions that robots can take charge of in the training contents. A total of 8 sessions of social skills training contents were developed by selecting social skills required for academic achievement and social interaction of elementary school students. The lesson consisted of providing positive and negative examples, modeling, role-playing, providing feedback on performance, and encouraging generalization stages using effective strategies for acquiring social skills. After developing social skills training contents using robots for elementary school students, so-called Friendly Friends (FF), a satisfaction survey was conducted on the field application of contents and participating students and teachers to examine the acceptance pattern. As a result, it was found that the participating students and teachers were satisfied with the contents. Finally, the meaning and the expected effects of the 'FF (Friendly Friends)' contents were discussed, and also, the matters to be considered when developing social skills training contents using robots in the future were suggested.

Determination of Solidified Material's Optimum Mixing Ratio for Reservoir Embankment Reinforcement (저수지 제체 보강을 위한 고화재 최적 배합비 결정)

  • Jaegeun Woo;Jungsoon Hwang;Seungwook Kim;Seungcheol Baek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.6
    • /
    • pp.5-12
    • /
    • 2024
  • Currently, a grouting method that minimizes damage to the reservoir embankment by injecting solidification agent at low pressure is commonly used to ensure waterproofing and safety of the embankment, but the use of solidification agents can cause issues, such as a decrease in durability and a lack of clear method for determining the mixing ratio. In this study, when the base ground and solidification agent were stirred and mixed at various weight mixing ratios, the permeability coefficient and strength of the mixture were confirmed through laboratory tests, and the optimal mixing ratio was suggested through analysis of the test results. The specimen for the laboratory test was produced considering the mixing ratio of the solidification agent. The specimen for the permeability coefficient test was tested by producing one each of cohesionless and cohesive soil for a mixing amount of 1.5 kN/m3 of solidification agent, and the permeability test results confirmed that the water barrier performance was secured below the permeability coefficient value required by various design criteria. A total of 24 specimens for the strength test were produced, 3 for each of 5 mixing amounts for cohesive soil and 3 mixing amounts for cohesionless soil. The strength test results showed that the uniaxial compressive strength tends to increase linearly with increasing curing time for both cohesionless soil and cohesive soil when the mixing amount is less than 2.0 kN/m3. Therefore, the optimal mixing ratio applied to the site is determined to be mixing amount of 1.5 kN/m3 and 2.0 kN/m3. Finally, numerical analysis reflecting test results was conducted on design case for improvement projects for aging reservoirs embankment to verify the water barrier performance and safety improvement effects.

Development Strengths of High Strength Headed Bars of RC and SFRC Exterior Beam-Column Joint (RC 및 SFRC 외부 보-기둥 접합부에 대한 고강도 확대머리 철근의 정착강도)

  • Duck-Young Jang;Jae-Won Jeong;Kang-Seok Lee;Seung-Hun Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.94-101
    • /
    • 2023
  • In this study, the development performance of the head bars, which is SD700, was experimentally evaluated at the RC (reinforced concrete) or SFRC (steel fiber reinforced concrete external beam-column joint. A total of 10 specimens were tested, and variables such as steel fibers, length of settlement, effective depth of the beam, and stirrups of the column were planned. As a result of the experiment, the specimens showed side-face blowout, concrete breakout, and shear failure depending on the experimental variables. In the RC series experiments with development length as a variable, it was confirmed that the development strength increased by 26.5~42.2% as the development length increased by 25-80%, which was not proportional to the development length. JD-based experiments with twice the effective depth of beams showed concrete breakout failure, reducing the maximum strength by 31.5% to 62% compared to the reference experiment. The S-series experiment, in which the spacing of the shear reinforcement around the enlarged head reinforcement was 1/2 times that of the reference experiment, increased the maximum strength by 8.4 to 9.7%. The concrete compressive strength of SFRC was evaluated to be 29.3% smaller than the concrete compressive strength of RC, but the development strength of SFRC specimens increased by 7.3% to 12.2%. Accordingly it was confirmed that the development performance of the head bar was greatly improved by reinforcing the steel fiber. Considering the results of 92% and 99% of the experimental maximum strength of the experiment arranged with 92% and 110% of the KDS-based settlement length, it is judged that the safety rate needs to be considered even more. In addition, it is required to present a design formula that considers the effective depth of the beam compared to the development length.

Effect of n-3 fatty acid deficiency on fatty acid compositions of nervous system in rats reared by artificial method. (N-3 지방산 결핍이 혈청 및 신경조직의 지방산 조성에 미치는 영향)

  • Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.634-640
    • /
    • 2007
  • Our previous study suggested that n-3 fatty acid deficiency was associated with significantly reduced spatial learning as assessed by Morris water maze test. Here we investigated an effect of n-3 fatty acid deficiency on rat brain, retina and serum fatty acyl compositions at 15 wks age using a first generational artificial rearing technique. Newborn Rat pups were separated on day 2 and assigned to two artificial rearing groups or a dam-reared control group. Pups were hand fed artificial milk via custom-designed nursing bottles containing either 0.02%(n-3 Deficient) or 3.1% (n-3 Adequate) of total fatty acids as a-linolenic acid(LNA). At day 21, rats were weaned to either n-3 deficient or n-3 adequate pelleted diets and fatty acid compositions of brain, retina and liver were analyzed at 15 wks age. Brain docosahexaenoic acid(DHA) was lower(58% and 61%, P<0.05) in n-3 deficient in comparison to n-3 adequate and dam-reared groups, receptively, while brain docosapentaenoic acid(DPAn-6) was increased in the n-3 deficient group. In retina and serum fatty acid compositions, the decreased precentage of DHA and increased precentage of DPAn-6 were observed. These results suggested that artificial rearing method can be used to produce n-3 fatty acid deficiency in the first generation and that adequate brain DHA levels are required for optimal brain function.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.