• Title/Summary/Keyword: total prediction error

Search Result 235, Processing Time 0.029 seconds

A study on electricity demand forecasting based on time series clustering in smart grid (스마트 그리드에서의 시계열 군집분석을 통한 전력수요 예측 연구)

  • Sohn, Hueng-Goo;Jung, Sang-Wook;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.193-203
    • /
    • 2016
  • This paper forecasts electricity demand as a critical element of a demand management system in Smart Grid environment. We present a prediction method of using a combination of predictive values by time series clustering. Periodogram-based normalized clustering, predictive analysis clustering and dynamic time warping (DTW) clustering are proposed for time series clustering methods. Double Seasonal Holt-Winters (DSHW), Trigonometric, Box-Cox transform, ARMA errors, Trend and Seasonal components (TBATS), Fractional ARIMA (FARIMA) are used for demand forecasting based on clustering. Results show that the time series clustering method provides a better performances than the method using total amount of electricity demand in terms of the Mean Absolute Percentage Error (MAPE).

The Applicable Investigation of Response Surface Methodology(RSM) for the Prediction of the Ignition Time, the Heat Release Rate and the Maximum Flame Height of the Interior Materials (내장재의 발화시간, 열방출율 및 최대화염 높이의 예측을 위한 반응표면방법론의 활용성 고찰)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.14-20
    • /
    • 2006
  • The aim of this study is to predict the ignition times and the HRR(heat release rate) for building interior materials. By using the literature data and RSM(response surface methodology), the new equations for predicting the ignition time and the HRR of building interior materials are proposed. The A.A.P.E.(average absolute percent error) and the A.A.D.(average absolute deviation) of the reported and the calculated ignition times by means of the thickness and the density were 4.35 sec and 1.57 sec, and the correlation coefficient was 0.987. The correlation coefficient of the reported and the calculated the net HRR by means of burner width and power was 0.983. Also the correlation coefficient of the reported and the calculated the total HHR by means of burner width and power was 0.999. The correlation coefficient of the reported and the calculated the maximum flame height by means of burner width and power was 0.999. The values calculated by the proposed equations were in good agreement with the literature data.

A Study on the Determination of the Performance Correction Factors of Solid Rocket Motors (고체추진기관의 성능 보정계수 예측방법에 관한 연구)

  • 성홍계;변종렬;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.57-66
    • /
    • 2001
  • The precise prediction of the performance is essential to develope the system at the development of propulsion system since no experimental data are available. The accuracy of 1on the total system's performance as well as itself, which depends on how the correction fac $I_{sp}$, and so on, are determined in accurate. However some of the design factors are dete engineer's experience or the similar test data if they are available, so far. This study was the method of the determination of correction factors of both $I_{sp}$ and thrust in direct. The bas is to define the detail performance loss mechanism of solid rocket motors, might be occurre and to calculate in quantitative those correction factors from the performance loss mechanism the test results, the model of this study can predict those factors less than 1% error, in additi physical variances of each loss mechanism.

  • PDF

Modelling Stem Diameter Variability in Pinus caribaea (Morelet) Plantations in South West Nigeria

  • Adesoye, Peter Oluremi
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.3
    • /
    • pp.280-290
    • /
    • 2016
  • Stem diameter variability is an essential inventory result that provides useful information in forest management decisions. Little has been done to explore the modelling potentials of standard deviation (SDD) and coefficient of variation (CVD) of diameter at breast height (dbh). This study, therefore, was aimed at developing and testing models for predicting SDD and CVD in stands of Pinus caribaea Morelet (pine) in south west Nigeria. Sixty temporary sample plots of size $20m{\times}20m$, ranging between 15 and 37 years were sampled, covering the entire range of pine in south west Nigeria. The dbh (cm), total and merchantable heights (m), number of stems and age of trees were measured within each plot. Basal area ($m^2$), site index (m), relative spacing and percentile positions of dbh at $24^{th}$, $63^{rd}$, $76^{th}$ and $93^{rd}$ (i.e. $P_{24}$, $P_{63}$, $P_{76}$ and $P_{93}$) were computed from measured variables for each plot. Linear mixed model (LMM) was used to test the effects of locations (fixed) and plots (random). Six candidate models (3 for SDD and 3 for CVD), using three categories of explanatory variables (i.e. (i) only stand size measures, (ii) distribution measures, and (iii) combination of i and ii). The best model was chosen based on smaller relative standard error (RSE), prediction residual sum of squares (PRESS), corrected Akaike Information Criterion ($AIC_c$) and larger coefficient of determination ($R^2$). The results of the LMM indicated that location and plot effects were not significant. The CVD and SDD models having only measures of percentiles (i.e. $P_{24}$ and $P_{93}$) as predictors produced better predictions than others. However, CVD model produced the overall best predictions, because of the lower RSE and stability in measuring variability across different stand developments. The results demonstrate the potentials of CVD in modelling stem diameter variability in relationship with percentiles variables.

Evaluation of benzene residue in edible oils using Fourier transform infrared (FTIR) spectroscopy

  • Joshi, Ritu;Cho, Byoung-Kwan;Lohumi, Santosh;Joshi, Rahul;Lee, Jayoung;Lee, Hoonsoo;Mo, Changyeun
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.257-271
    • /
    • 2019
  • The use of food grade hexane (FGH) for edible oil extraction is responsible for the presence of benzene in the crude oil. Benzene is a Group 1 carcinogen and could pose a serious threat to the health of consumer. However, its detection still depends on classical methods using chromatography which requires a rapid non-destructive detection method. Hence, the aim of this study was to investigate the feasibility of using Fourier transform infrared (FTIR) spectroscopy combined with multivariate analysis to detect and quantify the benzene residue in edible oil (sesame and cottonseed oil). Oil samples were adulterated with varying quantities of benzene, and their FTIR spectra were acquired with an attenuated total reflectance (ATR) method. Optimal variables for a partial least-squares regression (PLSR) model were selected using the variable importance in projection (VIP) and the selectivity ratio (SR) methods. The developed PLS models with whole variables and the VIP- and SR-selected variables were validated against an independent data set which resulted in $R^2$ values of 0.95, 0.96, and 0.95 and standard error of prediction (SEP) values of 38.5, 33.7, and 41.7 mg/L, respectively. The proposed technique of FTIR combined with multivariate analysis and variable selection methods can detect benzene residuals in edible oils with the advantages of being fast and simple and thus, can replace the conventional methods used for the same purpose.

Improvement of recommendation system using attribute-based opinion mining of online customer reviews

  • Misun Lee;Hyunchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.259-266
    • /
    • 2023
  • In this paper, we propose an algorithm that can improve the accuracy performance of collaborative filtering using attribute-based opinion mining (ABOM). For the experiment, a total of 1,227 online consumer review data about smartphone apps from domestic smartphone users were used for analysis. After morpheme analysis using the KKMA (Kkokkoma) analyzer and emotional word analysis using KOSAC, attribute extraction is performed using LDA topic modeling, and the topic modeling results for each weighted review are used to add up the ratings of collaborative filtering and the sentiment score. MAE, MAPE, and RMSE, which are statistical model performance evaluations that calculate the average accuracy error, were used. Through experiments, we predicted the accuracy of online customers' app ratings (APP_Score) by combining traditional collaborative filtering among the recommendation algorithms and the attribute-based opinion mining (ABOM) technique, which combines LDA attribute extraction and sentiment analysis. As a result of the analysis, it was found that the prediction accuracy of ratings using attribute-based opinion mining CF was better than that of ratings implementing traditional collaborative filtering.

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi;Abed Alanazi;Sabih Hashim Muhodir;Shtwai Alsubai;Abdullah Alqahtani;Mehrez Marzougui
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.307-321
    • /
    • 2024
  • This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.

Connectedness rating among commercial pig breeding herds in Korea

  • Wonseok Lee;JongHyun Jung;Sang-Hyon Oh
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.366-373
    • /
    • 2024
  • This study aims to estimate the connectedness rating (CR) of Korean swine breeding herds. Using 104,380 performance and 83,200 reproduction records from three swine breeds (Yorkshire, Landrace and Duroc), the CR was estimated for two traits: average daily gain (ADG) and number born alive (NBA) in eight breeding herds in the Republic of Korea (hereafter, Korea). The average CR for ADG in the Yorkshire breed ranges from 1.32% to 28.5% depending on the farm. The average CR for NBA in the Yorkshire herd ranges from 0% to 12.79%. A total of 60% of Yorkshire and Duroc herds satisfied the preconditions suggested for genetic evaluation among the herds. The precondition for the genetic evaluation of CR for ADG, as a productive trait, was higher than 3% and that of NBA, as a reproductive trait, was higher than 1.5%. The ADG in the Yorkshire herds showed the highest average CR. However, the average CR of ADG in the Landrace herds was lower than the criterion of the precondition. The prediction error variance of the difference (PEVD) was employed to assess the validation of the CR, as PEVDs exhibit fluctuations that are coupled with the CR across the herds. A certain degree of connectedness is essential to estimate breeding value comparisons between pig herds. This study suggests that it is possible to evaluate the genetic performance together for ADG and NBA in the Yorkshire herds since the preconditions were satisfied for these four herds. It is also possible to perform a joint genetic analysis of the ADG records of all Duroc herds since the preconditions were also satisfied. This study provides new insight into understanding the genetic connectedness of Korean pig breeding herds. CR could be utilized to accelerate the genetic progress of Korean pig breeding herds.

Prediction of East Asian Brain Age using Machine Learning Algorithms Trained With Community-based Healthy Brain MRI

  • Chanda Simfukwe;Young Chul Youn
    • Dementia and Neurocognitive Disorders
    • /
    • v.21 no.4
    • /
    • pp.138-146
    • /
    • 2022
  • Background and Purpose: Magnetic resonance imaging (MRI) helps with brain development analysis and disease diagnosis. Brain volumes measured from different ages using MRI provides useful information in clinical evaluation and research. Therefore, we trained machine learning models that predict the brain age gap of healthy subjects in the East Asian population using T1 brain MRI volume images. Methods: In total, 154 T1-weighted MRIs of healthy subjects (55-83 years of age) were collected from an East Asian community. The information of age, gender, and education level was collected for each participant. The MRIs of the participants were preprocessed using FreeSurfer(https://surfer.nmr.mgh.harvard.edu/) to collect the brain volume data. We trained the models using different supervised machine learning regression algorithms from the scikit-learn (https://scikit-learn.org/) library. Results: The trained models comprised 19 features that had been reduced from 55 brain volume labels. The algorithm BayesianRidge (BR) achieved a mean absolute error (MAE) and r squared (R2) of 3 and 0.3 years, respectively, in predicting the age of the new subjects compared to other regression methods. The results of feature importance analysis showed that the right pallidum, white matter hypointensities on T1-MRI scans, and left hippocampus comprise some of the essential features in predicting brain age. Conclusions: The MAE and R2 accuracies of the BR model predicting brain age gap in the East Asian population showed that the model could reduce the dimensionality of neuroimaging data to provide a meaningful biomarker for individual brain aging.

External cross-validation of bioelectrical impedance analysis for the assessment of body composition in Korean adults

  • Kim, Hyeoi-Jin;Kim, Chul-Hyun;Kim, Dong-Won;Park, Mi-Ra;Park, Hye-Soon;Min, Sun-Seek;Han, Seung-Ho;Yee, Jae-Yong;Chung, So-Chung;Kim, Chan
    • Nutrition Research and Practice
    • /
    • v.5 no.3
    • /
    • pp.246-252
    • /
    • 2011
  • Bioelectrical impedance analysis (BIA) models must be validated against a reference method in a representative population sample before they can be accepted as accurate and applicable. The purpose of this study was to compare the eight-electrode BIA method with DEXA as a reference method in the assessment of body composition in Korean adults and to investigate the predictive accuracy and applicability of the eight-electrode BIA model. A total of 174 apparently healthy adults participated. The study was designed as a cross-sectional study. FM, %fat, and FFM were estimated by an eight-electrode BIA model and were measured by DEXA. Correlations between BIA_%fat and DEXA_%fat were 0.956 for men and 0.960 for women with a total error of 2.1%fat in men and 2.3%fat in women. The mean difference between BIA_%fat and DEXA_%fat was small but significant (P < 0.05), which resulted in an overestimation of $1.2{\pm}2.2$%fat (95% CI: -3.2-6.2%fat) in men and an underestimation of $-2.0{\pm}2.4$%fat (95% CI: -2.3-7.1%fat) in women. In the Bland-Altman analysis, the %fat of 86.3% of men was accurately estimated and the %fat of 66.0% of women was accurately estimated to within 3.5%fat. The BIA had good agreement for prediction of %fat in Korean adults. However, the eight-electrode BIA had small, but systemic, errors of %fat in the predictive accuracy for individual estimation. The total errors led to an overestimation of %fat in lean men and an underestimation of %fat in obese women.