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Abstract
The use of food grade hexane (FGH) for edible oil extraction is responsible for the presence 
of benzene in the crude oil. Benzene is a Group 1 carcinogen and could pose a serious threat 
to the health of consumer. However, its detection still depends on classical methods using 
chromatography which requires a rapid non-destructive detection method. Hence, the 
aim of this study was to investigate the feasibility of using Fourier transform infrared (FTIR) 
spectroscopy combined with multivariate analysis to detect and quantify the benzene residue 
in edible oil (sesame and cottonseed oil). Oil samples were adulterated with varying quantities 
of benzene, and their FTIR spectra were acquired with an attenuated total reflectance (ATR) 
method. Optimal variables for a partial least-squares regression (PLSR) model were selected 
using the variable importance in projection (VIP) and the selectivity ratio (SR) methods. The 
developed PLS models with whole variables and the VIP- and SR-selected variables were 
validated against an independent data set which resulted in R2 values of 0.95, 0.96, and 0.95 
and standard error of prediction (SEP) values of 38.5, 33.7, and 41.7 mg/L, respectively. The 
proposed technique of FTIR combined with multivariate analysis and variable selection 
methods can detect benzene residuals in edible oils with the advantages of being fast and 
simple and thus, can replace the conventional methods used for the same purpose.

Keywords: benzene adulteration, edible oils, food safety, FTIR spectroscopy, rapid 
measurement

Introduction
Edible oils are subjected to various processes to ensure their suitability for human consumption. 

Edible oils have a critical effect on the taste and mouth-feel of foods, whilst enhancing the nutritive 
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value of the food (Hong et al., 2018). Sesame oil have a mild odour, pleasurable taste and as such used as a natural 

salad oil requiring little or no gear up. Sesame oil is described to be the high nutritive and biological values as well as 

excellent quality taste (Park et al., 2013). It is widely used as a cooking oil, in shortening and margarine, as a soap fat, in 

pharmaceuticals and work as reactionary for insecticides (Budowski and Markely, 1951). While, cottonseed oil has long 

been considered to be a good vegetable oil for frying, in part because it tends to impart a toasted aroma to fried products 

(Dowd et al., 2010). Chemical oil extraction, which uses a solvent during oil extraction, is popular commercial procedure 

because it produces high yields in fast and inexpensive way. In a previous study, Jomtib et al. (2011) used hexane, benzene, 

and toluene as co-solvents to determine the effect of adding co-solvents to the oil in various concentrations (10 - 50% v/

v) on the formation of methyl esters. Benzene was used during the oil extraction procedure because it can extract a higher 

quantity of oil than other solvents. Because of the carcinogenic property of benzene, n-hexane is globally preferred solvent 

because of its extraction efficiency, easy availability, high stability, low evaporation loss, low corrosion, low greasy residue, 

and better odour and flavour (Saxena et al., 2011). The use of hexane as a solvent during oil extraction may also contribute 

to the occurrence of benzene in food (Masohan et al., 2000). The low boiling point of benzene compared to edible oil 

suggested that some residues remain in the oil after extraction. Recently, benzene residues were found in cottonseed oil 

and these remnants provide the motivation to identify and quantify benzene in edible oil because its presence is directly 

related to consumer health.

Benzene, a volatile organic compound has been classified as human carcinogen by Environmental Protection Agency 

(EPA) that can form when benzoate and ascorbic acids were present under the influence of heat, UV light, and metal 

ions as catalysts (Styarini et al., 2011). For general studies, level of benzene in drinking water (10 and 5 µg/L) is usually 

adopted by WHO and United States Environmental Protection Agency (USEPA) for references because there is no specific 

limit of benzene in food and beverages (Aprea et al., 2008; Vinci et al., 2012). Also the maximum limit for benzene 

concentration based on toxicity has been set in Europe at 5 mg/L (Atkinson et al., 1995). Most cases of benzene toxicity 

have been reported in Italy (Vigliani and Saita, 1964; Vigliani, 1976), and Turkey (Aksoy et al., 1972; Aksoy et al., 1974), 

which together had the highest rate of chronic myelogenous and myelogenous leukaemia.

Several analytical techniques have been applied to the detection of benzene in edible oil samples. Masohan et al. (2000) 

estimated the residue of benzene in crude and refined samples of rice bran and soy oil, and the oil-extracted cakes using 

gas chromatography and UV spectroscopy. In another study, Styarini et al. (2011) detected benzene in beverages using 

headspace gas chromatography. Furthermore, solid-phase micro-extraction and gas chromatography was used for the 

detection of benzene in beverages i.e., soft-drink, juice and tea samples (Sanchez et al., 2012). Within this context, it is 

evidently necessary to develop analytical techniques to make it possible to identify the solvent residue in edible oils as 

these methods required sample preparation and the use of chemicals which is destructive, leading to the end use of samples.

Fourier-transform infrared (FTIR) spectroscopy is a method used to determine the structures of molecules by their 

characteristic absorption of infrared radiation and the resulting molecular vibrational spectra. Spectroscopy is regularly 

used for both the qualitative and quantitative analysis of agricultural and food products and presents an alternative to 

time-consuming, wet-chemical, and destructive techniques (Lim et al., 2017; Mo et al., 2017; Qin et al., 2017; Ning et 

al., 2018). A key advantage of this technique is its high-speed operation; a sample can be analysed in seconds, and the 

spectrometer simultaneously collects all light frequencies that are transmitted or reflected from the sample. FTIR spectroscopy 

measurements are also non-destructive, making them successful in evaluating the quality of agriculture products and beverages.
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FTIR spectroscopy has previously been combined with discriminant analysis and partial least-squares (PLS) analysis, 

and has been successfully used to quantify adulterants, such as refined oils and different types of vegetable and nut oils, in 

extra virgin olive oil (Lai 1995; Marigheto et al., 1998; Kupper et al., 2001). IR studies of edible oils generally use specific 

absorbance bands to evaluate traditional indices and other parameters of interest in relation to the composition of edible 

oils (van de Voort et al., 1992; Che Man and Setiowaty, 1999; Che Man and Mirghani, 2000; Setiowaty et al., 2000). For 

example, a common fraud is the adulteration of Moroccan olive oil mixed with other edible oils of lower commercial 

value (Flores et al., 2006). IR spectroscopy and PLS analysis were used to quantify the percentage of adulterants such as 

soybean oil, pure tea seed oil and sunflower oil in virgin walnut oil (Liang et al., 2013).

Currently, a wide range of vibrational spectroscopic techniques in combination with chemometrics have shown 

potential as sensitive and rapid techniques for the authentication and quality analysis of a variety of food products. Our 

study devoted to achieve quantitative detection of benzene residues in edible oil using FTIR spectroscopy. We specifically 

attempted predict the benzene concentration in edible oils using FTIR spectroscopy with an integrated PLS model. We 

conducted spectral analysis of five concentrations of benzene in edible oils, which were chosen as 0, 100, 200, 300, 400, 

and 500 mg/L. Based on the results, the different concentrations were identified and categorized using a multivariate 

analytical method.

Materials and Methods

Sample Preparation
Commercial samples of two different edible oils (cottonseed oil and sesame oil) were purchased from a market in the 

South Korea. Benzene was purchased from Sigma Aldrich (St. Louis, USA) which is essentially used to extract cooking oil 

from seeds. The edible oil samples were spiked with benzene at various concentrations (100, 200, 300, 400 and 500 mg/L). 

The spiked oil samples were placed in snap-cap vials and shaken with a high-speed shaker (Vortex-Genie® 2, Scientific 

Industries, Inc., Model G560, USA) for over 2 min. Ten samples of each of pure and benzene-spiked edible oil were used 

for FTIR data analysis; therefore, a total of 120 samples (60 samples for each edible oil) were used to measure their spectra 

by FTIR.

Spectral Measurements
The sample measurements were performed using a Nicolet 6700 (Thermo Scientific Co., Madison, USA) FTIR 

spectrophotometer was configured with an attenuated total reflectance (ATR) accessory, a deuterated triglycine sulphate 

(DTGS) detector, and a KBr beam splitter controlled by OMNIC software. The spectra were measured separately for 

each sample between 4,000 and 650 cm-1, and a total of 32 successive scans were collected from each sample with 4 

cm-1 intervals. For measurement, a drop of oil was deposited on the surface of the diamond crystal sampling plate using 

a 1 mL syringe. After measuring a sample, the oil was removed with a dry tissue and then the surface was rinsed firstly 

with alcohol and then with water before moving to another sample. Finally, the surface was dried with a clean tissue. 

As, benzene is a highly volatile compound, we believe that there are no traces remain in the ATR after cleaning. Before 
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recording the sample spectra, a background scan was obtained once for pure oil and once for adulterated oil samples with 

an empty sample plate.

Data Analysis
Data Pre-processing

Spectral data pre-processing is one of the most critical steps in a data mining process that deals with the preparation 

and transformation of the initial dataset. Several pre-processing methods have been proposed to model the effect of 

multiplicative light scattering (Chen et al., 2006). Multiplicative scatter correction (MSC) is a widely used technique (Geladi 

et al., 1985). In our study, MSC was used to remove the non-linearity in the data caused by scattering from the samples. 

The MSC operation undergoes into two steps: estimation of the correction coefficients,

(1)

and correction of the spectra

where the b variables are the correction coefficients, e is the modelled part and xorg is the original spectra measured 

by IR instrument, xref is the reference spectra which is the average over a set of samples and xcorr is the corrected spectra, 

respectively (Rinnan et al., 2009).

Multivariate Analysis

Chemometrics and multivariate data analysis provide the solution to many problems in qualitative and quantitative 

analysis and are especially useful in adulteration and quality assessment of food products (Muick et al., 1998). The 

more frequently used method is multivariate analysis, which is a collection of methods that can be used when several 

measurements are made on objects. Multivariate linear regression is an extension of multiple linear regression to model 

multiple responses (Jung and Park, 2015). This method is concerned with data sets that have more than one response 

variable for each observational or experimental unit. We can perform a certain measurement and store the value for a given 

phenomenon in a univariate or multivariate variable called y = (y1, y2, …, ym)T where m is number of independent variables 

(Ami et al., 2000).

Principal component analysis (PCA) and PLS are useful multivariate tools for spectral data analysis because of the 

quality of their calibration model and their ease of implementation (Goodarcre et al., 2003; Tapp et al., 2003; Wang et al., 

2003). These methods are reliable by generating components as a new input variable to linearly compose original input 

variables for multivariate data analysis and modeling (Yang et al., 2015). Generally, the first few transformed variables are 

sufficient to account for most of the variations (e.g., PCA) or to maximize separability (e.g., PLS) of the whole data. In our 

data analysis, PCA was carried out on the MSC-processed FTIR spectra because it can be readily applied to spectroscopic 

data to perceive the nature and scattering level of the data. PCA is a well-known method in multivariate analysis that 

is frequently used to maximize the variance of a linear combination of the variables. This method uses sophisticated 

underlying mathematical principles to transform several possibly correlated variables into smaller number of variables 

(principal components) (Richardson, 2009). The principal components (PCs) are orthogonal and the first few principal 

(2)
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components (i.e., PC1, PC2, etc.) provide most of the information about the material. The linear combination created by 

principal components can be expressed in the form:

(3)

where PCA treats the peak positions as vectors (x1, x2, …, xn) and forms a linear combinations of the vectors by assigning 

a weight (a1, a2, …, an) to each vector in the spectra (Rusak et al., 2003). When predictors are reduced to a smaller set of 

uncorrelated components partial least-squares regression (PLSR) can be used on these components rather than on the 

original data. PLSR is especially useful when predictors are highly collinear, or when there are more predictors than 

observations. PLSR provides information about the correlation structures of the variables and about their structural 

similarities or dissimilarities. In this study, PLSR was developed for preprocessed spectral data to predict the content of 

benzene residues in the edible oil samples. The PLSR equation is given as:

(4)

(5)

where a spectral data matrix X is decomposed into the score matrix T, loading matrix P, and error matrix E, and the 

reference values matrix Y is decomposed into the score matrix U, loading matrix Q, and error matrix F. The basis of 

present study mainly focus on constructing and selecting the subsets of features that are useful to build a good predictor. 

This approach contrasts with the problem of finding or ranking all potentially relevant variables. Selecting the most 

relevant variables is usually suboptimal for building a predictor, particularly if the variables are redundant. Conversely, a 

subset of useful variables may exclude many redundant variables. The quality of the calibration model is described by 

the squared coefficient of determination (R2) and the standard error of prediction (SEP). The best calibration model for 

prediction was the one with the highest value of R2 and the lowest SEP value.

Variable Selection 

Selecting the most relevant variables is usually suboptimal for building a predictor, particularly if the variables are 

redundant. The variable importance in projection (VIP) includes a measurement of the variable dependency, which is 

considered as a benefit of this multivariate filter method. VIP calculates how much a variable contributes to the description 

of the dependent or reference data sets (Y) and the independent or spectral variables (X) (Lohumi et al., 2015). The VIP 

score of variable j is calculated by the following equation:

where Wjf is the weight value for component f of variable j, SSYf is the sum of squares of explained variance for the 

fth component, J is the number of variables, SSYtotal is the total sum of the squares for the dependent variable, and F is the 

total number of components. A variable with higher VIP score is more relevant to the prediction of the response variable. 

Normally, the average of the squared values of the VIPs is equal to 1 (Cho et al., 2002). The criterion of VIP value with 

greater than 1 is then often used as a cut-off point for variable selection (Lazraq et al., 2003; Chong and Jun, 2005).

(6)
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The selectivity ratio (SR) denotes the ratio between the explained and the residual (unexplained) variance for each 

variable in the target projection (Farres et al., 2015). A high value denotes a variable with good predictive performance 

(Anderssen et al., 2006). This method essentially visualizes the important variables of a multivariate data set in the 

prediction of a property (Rajalahti et al., 2009a). The target projection model that calculates the explained and residual 

variance for each variable can be written as:

(7)

where tTP is the target-projection score, PTP is target projection loading and ETP is target-projection residual (Lohumi et al., 

2015). All multivariate analysis was performed using MATLAB software version 7.0.4 (The Mathworks, Natick, USA).

Results and Discussion

Spectral exploration
The raw FTIR spectra of both sesame and cottonseed oils are shown in Fig. 1. The raw spectra revealed some peaks in 

both the fingerprint and functional group regions for sesame and cottonseed oils. However, some parts of the functional 

group region such as the region 4000 - 3156 cm-1, which is assigned to the hydroxyl stretching band, no notable difference 

were observed in intensity of spectra of oil with different concentration of benzene, therefore, we discarded this region. The 

absorption in the 2700 - 3000 cm-1 region is associated with methylene stretching (McMullin et al., 2015), and we obtained 

a small peak in the region from 2435 - 2246 cm-1 because of the effect of background CO2. The variations in these spectral 

Fig. 1. Raw Fourier transform infrared (FTIR) spectra for pure sesame and cottonseed oil.
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regions were not attributed to changes in the sample composition. Therefore, only the remaining spectral region was used 

for further data analysis to minimize the influence of these regions on model development.

The peak at ~ 3009 cm-1 was assigned to the C=CH (cis) stretching vibration mode, and the band at ~ 1742 cm-1 was 

related to the stretching mode of –C=O bonds in ester groups, which are found in samples with a high content of saturated 

fatty acids (Lerma-Garcia et al., 2010; Rohman and Man, 2010). The peak at ~ 1461 cm-1 and ~ 1378 cm-1 represented the –

C–H (CH2) bending (scissoring) mode of vibration and the –C–H (CH3) bending symmetric vibrational mode, respectively. 

In the fingerprint region, the peaks at 1235 and 1161 cm-1, and 1118 and 1098 cm-1 were related to the C–O (ester) and C–O 

stretching mode of vibration. Trans –CH=CH- out of plane bending peaks were observed at ~ 964, 914, 871 and 844 cm-1, 

while the peak at ~ 721 cm-1 is related to the –C=O stretching mode. The functional groups and vibrational modes in the FTIR 

spectra of edible oil were similar those reported previously (Lerma-Garcia et al., 2010; Rohman and Man, 2010).

Principal component analysis interpretation
The selected FTIR data were preprocessed using an MSC method before conducting the multivariate data analysis and 

then PCA was applied on the edible oils data to check for both possible outliers and natural data groupings. The purpose of 

the PCA method is to concentrate the source of variability in the data into the first few PCs by decomposing the data matrix 

(Hori and Sugiyama, 2002). The score plot is a projection of data onto a subspace that is used to interpret the relations 

between observations. The resulting scatter plot of the PC scores showed one outlier (marked with a blue box in Fig. 2) 

from each oil group. In Fig. 2, the representative points of the sesame oil (Fig. 2a) and cottonseed oil (Fig. 2b) samples are 

mapped in the space spanned by the first two principal components. These score plots showed that a reasonable clustering 

was present for the different concentrations of benzene added to both edible oils.

Fig. 2. Principal component analysis (PCA) score plot for sesame oil (a) and cottonseed oil (b) after applying 
multiplicative scatter correction (MSC) preprocessing.
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Further, we attempted to interpret the first three PC loadings (PC1, PC2, and PC3), explaining about 98% of total 

variance in terms of chemical composition. These loadings give a correlation between a component and a variable that 

estimates the information they share. Using these plots can extract information about which variable have the largest effect 

on each component. In addition, these loading plots are helpful for characterizing each component in terms of variables. 

The loading of PC1 (Fig. 3a) shows a small peak at around 3000 cm-1, a distinct peak around 1500 cm-1, and an upwards 

trend at the end. In addition, PC2 (Fig. 3b) shows two strong negative peaks at ~ 2000 cm-1 and a small positive peak at ~ 

1600 cm-1, while PC3 (Fig. 3c) shows a negative peak in the same region (1600 cm-1) caused by the variation in benzene 

concentration among the samples shown in Fig. 3d.

Fig. 3. First three principal components loading plots from principal component analysis (PCA) for benzene-
adulterated sesame oil (a), (b), (c) and the spectrum of pure benzene with variable importance in projection 
(VIP) and selectivity ratio (SR) for selected variables (d).
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PLSR Model
A PLSR model was employed to develop a predictive model for detecting the added benzene concentration in edible oils. 

After discarding the two outlier samples (sesame oil: 400 mg/L; cottonseed oil: 0 mg/L), the samples were categorized 

based on the adulterant concentration. Totally 118 samples (after the removal of two outliers) from both edible oils was 

divided into calibration (70 samples) and validation (48 samples) set in a ratio of 6 : 4 to evaluate the accuracy of the 

model. The PLSR model was developed using the MSC-preprocessed spectra of pure and adulterated oil samples. In the 

multivariate analysis, two data sets were used for calibration: X (independent variables, i.e., spectral data) and Y (dependent 

variable, i.e., adulteration percentage), and regressed to develop the model for prediction. The validation set, which was not 

used in model development, was used to test the predictive accuracy of the developed model.

The calibration model gave a very high correlation value (R2) of 0.99 with a standard error of calibration (SEC) of 15.1 

mg/L. However, the R2 and SEP for prediction were 0.95 and 38.5 mg/L, respectively (Table.1). Fig. 4a shows the actual 

Fig. 4. Regression plot of the actual versus calculated percentages of benzene in the validation set of 
the whole spectral region (a), VIP (b) and SR (c) variable selection methods. VIP, variable importance in 
projection; SR, selectivity ratio.
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and predicted concentrations of benzene in edible oils by the PLSR model for the validation set. We also determined the 

optimal number of factors based on the lowest root mean square error (RMSE) in the validation process, and seven factors 

were selected.

Two model-based variable selection methods, i.e., VIP and SR were executed on PLS-based results to select the optimal 

variables. The VIP measurement includes the variable dependency which is a key benefit of the multivariate filter method. 

However, the SR is used to avoid model overfitting and improves the predictive competence. SR is usually applied to filter 

out irrelevant variables (Kvalheim and Karstang, 1989; Rajalahti et al., 2009b). By assigning a threshold value 1.2 for 

VIP and 0.03 for SR, we selected a total of 166 and 141 variables for pure and adulterated oil samples, respectively. Then, 

the PLSR model were developed for both variable selection methods. A summary of the results is shown in Table 1. All 

the values found for the parameters in Table 1 suggested that the model developed with selected variables afforded either 

higher or similar prediction accuracy compared to the PLS model developed with whole corrected variables. However, the 

highest coefficient of determination (Rp
2 = 0.96) with standard error of prediction (SEP = 33.7 mg/L) was obtained using 

the VIP variable selection method. Fig. 4b and 4c show the excellent prediction ability of the PLSR model developed with 

selected variables.

The VIP and SR selected variables are represented against the spectra of pure benzene in Fig. 3d. The spectra showed 

that most of the selected variables by VIP method were related to the benzene-sensitive bands while SR selected variables 

are dissimilar to those selected by VIP. A simple visual comparison of the variables selected using these two different 

methods suggested that the VIP selected variables were more genuine than SR selected variables when compared with the 

pure benzene spectrum. This improved performance in VIP could be because SR was limited by the selection of a reliable 

threshold for assessing the significance of a selected discriminating variable. The selected variables for VIP and SR were 

15.9% and 13.5% of the total variables, respectively. Visual inspection of the beta coefficient from PLSR model (Fig. 5a) 

showed that certain peaks within certain spectral regions were important for differentiating between pure and adulterated 

oil samples. These distinct peaks are influenced by the different benzene concentration of the other group of samples. 

However, minor peaks can be caused by the spectral variations between the two different kinds of edible oils.

Residual plots which illustrate the residual against the corresponding fitted values or the explanatory variables have 

been widely used to diagnose the regression model in terms of model structure such as numbers and types of variables, 

Table 1. Prediction results by partial least squares regression (PLSR), variable importance in projection (VIP), and 
selectivity ratio (SR) variable-selection methods for detecting pure and benzene-adulterated edible oils.  

Methods Calibration Validation Prediction Factors/
VariablesRc

2   u SEC (mg/L)v Rv
2   w SEV (mg/L)x Rp

2   y SEP (mg/L)z

Whole spectra 0.99 15.1 0.95 36.6 0.95 38.5 7/1046
VIP 0.99 18.9 0.95 39.5 0.96 33.7 8/166
SR 0.98 25.9 0.95 37.6 0.95 41.7 5/141
R2 values for ucalibration, wvalidation, and yprediction. vstandard error of calibration, xstandard error of validation, and zstandard 
error of prediction are the standard errors of calibration, validation, and prediction, respectively.
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inclusion or exclusion of interaction terms, and necessity of higher order terms or non-linear terms (Kutner et al., 2008). 

An increasing trend in the residuals plot suggests that the error variance increases with the independent variable; while 

a decreasing trend indicates that the error variance decreases with the independent variable. Also, one of residual plots 

showing the standardized residuals vs. the predicted values is useful in detecting violations in linearity (Stevens, 2009). 

Fig. 5b shows a residual plot against the sample number to study the relationship between the different concentrations 

of benzene and the values predicted by the whole variable, PLS-VIP, and PLS-SR models for edible oil samples. The 

obtained residual figure shows an identical pattern for both whole variables, and PLS-VIP as these methods get negative 

values for low concentration. On comparing with these two methods, PLS-SR extract more negative values for all 

concentration which gives a small change in the random pattern of the residuals. Thus, it shows an agreement between 

actual and predicted values for benzene concentration and provides a decent fit for a linear model.

Conclusion
In this study, FTIR spectroscopy combined with PLS multivariate analysis was demonstrated to be capable of detecting 

trace amounts of benzene in edible oils. Variable selection methods were additionally adopted to select the informative 

variables and avoid model over fitting and they improved the model accuracy developed by PLS. Also, the selected 

variables were authentic by showing distinct peaks in the same spectral regions when compared to the pure benzene 

spectrum. The results of this study indicate that specific FTIR spectral regions are effective for the determination of 

benzene traces in edible oils. Our approach highlights that FTIR spectroscopy is a rapid technique that can be performed 

with no sample preparation, and thus has a potential to be an effective analytical tool for the detection of benzene trace in a 

variety of edible oils.

Fig. 5. Beta coefficient plot from the PLSR (a), Residual plot for whole variables, PLS-VIP and PLS-SR method 
(b). PLSR, partial least squares regression; VIP, variable importance in projection; SR, selectivity ratio.
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