• Title/Summary/Keyword: total pore volume

Search Result 193, Processing Time 0.026 seconds

Distribution and Mobility of Herbicide $^{14}C$-Molinate in a Rice-Paddy-Soil Lysimeter (벼 재배 Lysimeter 환경에서 제초제 $^{14}C$-molinate의 분포 및 이동성 평가)

  • Park, Byung-Jun;Kim, Chan-Sub;Park, Kyung-Hun;Park, Hyeon-Ju;Im, Geon-Jae;Choi, Ju-Hyeon;Shim, Jae-Han;Ryu, Gab-Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.3
    • /
    • pp.172-182
    • /
    • 2006
  • This study was designed to assess molinate fate in the lysimeter by measuring the total radioactivity in the leachate, evolved $^{14}CO_2$, and $^{14}C$-residues in soil and rice plant. The amounts of applied $^{14}C$ in the leachate from the lysimeter for 20 weeks were 1.05% in 2.31 pore volume (217,465 mL) at the first and 0.34% in the second year, respectively. The amount of $^{14}CO_2$ evolved from the lysimeter accounted for 6.47% and 0.03% of applied $^{14}C$ in the first and second year. The $^{14}C$-activities in the soil layer of the lysimeter were distributed 18.0% (1st) and 13.3%(2nd) in the depth of 0 to 10 cm, 4.3 (1st) and 1.1% (2nd) in the depth of 10 to 20 cm. Most of the applied $^{14}C$ was detected in the top 20 cm soil layer. Total $^{14}C$ in rice plants grown at lysimeter were detected 11.46% of applied $^{14}C$. 11.11% in straw, 0.24% in brown rice grain, 0.08% in chaff and 0.03% in ears were distributed in the first year. Consequently, environmental fate of molinate using lysimeter simulating a paddy rice field were investigated 25.24% in soil, 11.64% in rice plant, 1.05% in leachate, 6.74% in evolved $^{14}CO_2$ and 0.02% in volatilized organic chemicals in the first year.

Surfactant Enhanced In-Situ Soil Flushing Pilot Test for the Soil and Groundwater Remediation in an Oil Contaminated Site (계면활성제 원위치 토양 세정법을 이용한 유류 오염 지역 토양.지하수 정화 실증 시험)

  • 이민희;정상용;최상일;강동환;김민철
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.77-86
    • /
    • 2002
  • Surfactant enhanced in-situ soil flushing was performed to remediate the soil and groundwater at an oil contaminated site, where had been used as a military vehicle repair area for 40 years. A section from the contaminated site (4.5 m $\times$ 4.5 m $\times$ 6.0 m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average $K_d$ of 2.0$\times$$10^{-4}$cm/sec. Two percent of sorbitan monooleate (POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminated section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed on a gas-chromatography (GC) for TPH concentration in the effluent with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit (WWDL). The effluent TPH concentration from wells with only water flushing was below 10 ppm. However, the effluent concentration using surfactant solution flushing increased to 1751 ppm, which was more than 170 times compared with the concentration with only water flushing. Total 18.5 kg of oil (TPH) was removed from the soil and groundwater at the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. The removal efficiency of surfactant enhanced in-situ flushing was investigated at the real contaminated site in Korea. Results suggest that in-situ soil flushing could be a successful process to remediate contaminated sites distributed in Korea.

The Cracking Reaction of Vacuum Gas Oil on Mordenite Modified by HF and Steaming (불화수소산과 스팀처리한 모더나이트상에서 진공가스유의 분해반응)

  • Lee, Kyong-Hwan;Ha, Baik-Hyon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.925-937
    • /
    • 1996
  • Three types of mordenites treated by steaming($SM_{6.5}$), HF solution for $SM_{6.5}(FM_a)$ and HF solutlon+steaming for $SM_{6.5}(FM_b)$ were prepared and used as cracking catalysts of vacuum gas oil. These samples were analysed by XRF and XPS for average and surface Si/Al atomic ratio, XRD for unit cell constants, nitrogen adsorption/desorption for porosity, pyridine-IR for acidic properties. In comparison with three type samples, $SM_{6.5}$ had a lot of acid amount and showed micropore volume mostly(>85% to total volume). Dealuminated $FM_a$, compared with $SM_{6.5}$, was decreased a little in acid amount and improved for porosity. Also, $FM_b$ was decreased further in acid amount and developed in mesopore dramatically. The catalytic activity and the yield of gasoline, kerosine+diesel and branched aromatic over the modified mordenites which have developed mesopore were improved. This is due to limited access of diffusion of large molecules within pore of the modified mordenites.

  • PDF

Optimum Condition of Peatmoss-Based Substrate for Growth of Red Pepper (Capsicum annuum L.) Plug Seedlings (피트모스 혼합상토를 이용한 고추 육묘용 최적 상토 개발)

  • Lee, Hyun-Haeng;Ha, Sang-Keon;Kim, Ho-Jin;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.392-399
    • /
    • 2007
  • This study was carried out to assess optimum conditions of peatmoss-based substrates for red pepper plug seedlings. Peatmoss-based substrates prepared by mixing of peatmoss with vermiculite, perlite, rice hull and zeolite at various mixing ratios were used for growing pepper plug seedlings. The physical and chemical properties of the peatmoss substrate were analyzed by the CEN(European committee for standardization) method. Fresh and dry weights (shoot, root), leaf area, root length and T/R ratio (dry shoot weight/dry root weight) were determined at 55 days after sowing. The results showed that the growing media PVSZ 6 (peatmoss:silver vermiculite: zeolite=6:3.9:0.1) and PVGZ 6 (peatmoss:gold vermiculite: zeolite=6:3.9:0.1) can successfully be used for red pepper plug seedlings judging from dry weight and T/R ratio of the plug seedlings. The optimal ranges of total pore space, water volume, air volume, easily available water content and water buffering capacity of the peatmoss based growing media for pepper plug seedlings were 87~93%, 52~71%, 20~41%, 10~37% and 0.6~10%, respectively.

Optimum Condition of the Coir-Based Substrate for Growth of Red Pepper (Capsicum annuum L.) Plug Seedlings (코이어 혼합상토를 이용한 고추 육묘용 최적 상토개발)

  • Lee, Hyun-Haeng;Ha, Sang-Keon;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.369-376
    • /
    • 2007
  • This experiment was carried out to investigate optimum conditions of coir-based substrates for the red pepper plug seedlings. Eleven different coir based substrates prepared by mixing of coir, vermiculite, rice hull, perlite, zeolite, mixed at different ratios were tested. The physical and chemical properties of the substrates were analyzed by the CEN (European committee for standardization) method. Fresh and dry weights of shoot and root, leaf area, root length, and T/R ratio (dry shoot weight/dry root weight) were determined at 55 days after sowing. The results showed that the growing media CRZ 8(coir:rice hull: vermiculite=8:1.9:0.1) and CVSZ 6(coir:silver vermiculite: zeolite=6:3.9:0.1) can successfully be used for pepper plug seedlings judging from dry weight and T/R ratio of the plug seedlings. The optimal range of total pore space, water volume, air volume, easily available water content and water buffering capacity of the coir-based growing substrates for pepper plug seedlings were in the range of 92~94%, 52~60%, 32~43%, 18~21%, and 0.9~8%, respectively.

Effects of Acid Treatment of SAPO-34 on the Catalytic Lifetime and Light Olefin Selectivity during DTO Reaction (DTO 반응에서 촉매수명과 경질 올레핀 선택도에 미치는 SAPO-34의 산 처리 효과)

  • Choi, Ki-Hwan;Lee, Dong-Hee;Kim, Hyo-Sub;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.217-223
    • /
    • 2015
  • Effects of the post-acid treatment of SAPO-34 sample by hydrochloric acid were investigated to enhance the catalytic performance in DTO reaction. Uniformly sized SAPO-34 samples with cubic-like morphology were prepared by hydrothermal method using TEAOH and DEA as the structure directing agents. It was modified in terms of the HCl concentration and treating time. As a result, the total surface area and micropore volume for the well modified samples increased and the total acid site was somewhat decreased along with the erosion of the external surface. Especially, the catalytic lifetime and light olefins selectivity for acid treated SAPO-0.2 M (3 h) samples were considerably enhanced compared with those of untreated SAPO-34 samples. It indicates that the deactivation by coke formation proceeds mainly at the pore entrance on the external surface. Therefore, the acid treatment was confirmed to be a simple method which can significantly improve the catalytic performance by modifying the external surface of SAPO-34 catalyst.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Ultrafiltration and Photocatalyst: 1. Effects of Photocatalyst and Water-back-flushing Condition (세라믹 한외여과 및 광촉매 혼성공정에 의한 고탁도 원수의 고도정수처리: 1. 광촉매 및 물역세척 조건의 영향)

  • Cong, Gao-Si;Park, Jin-Yong
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.127-140
    • /
    • 2011
  • The effects of $TiO_2$ photocatalyst coating bead concentration, water-back-flushing period (FT), and back-flushing time (BT) were investigated in hybrid process of ceramic ultrafiltration and photocatalyst for advanced drinking water treatment in this study. Photocatalyst coating bead concentration was changed in the range of 10~40 g/L, FT in 2~10 min and BT in 6~30 sec. Then, we observed the effects on resistance of membrane fouling $(R_f)$, permeate flux (J) and total permeate volume $(V_{\Upsilon})$ during total filtration time of 180 min. As decreasing photocatalyst coating bead concentration, $R_f$ increased and J decreased. $V_{\Upsilon}$ was the highest value of 8.85 L at 40 g/L of photocatalyst coating bead concentration. At FT change experiment, $R_f$ decreased and J increased as decreasing FT. Then $R_f$ decreased and J increased according to increasing BT at BT change experiment. Because at NBF (no back-flushing) dramatic membrane fouling reduced membrane pore size, turbid and dissolved organic matters ($UV_{254}$ absorbance) could be removed efficiently. Therefore, treatment efficiencies of turbidity and dissolved organic matters were the highest at NBF. Then by cleaning effect of photocatalyst coating bead, the treatment efficiencies of turbidity and dissolved organic matters increased as decreasing FT and increasing BT.

Effects of Activated Carbon Types and Service Life on Removal of Odorous Compounds: Geosmin and 2-MIB (활성탄 재질과 사용연수에 따른 Geosmin과 MIB 흡착특성)

  • Lee, Hwa-Ja;Son, Hee-Jong;Lee, Chul-Woo;Bae, Sang-Dae;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.404-411
    • /
    • 2007
  • Adsorption performance of odorous compounds such as geosmin and 2-MIB on granular activated carbon were evaluated in this study. The coal-based activated carbon was found more effective than other carbons in adsorption of geosmin and 2-MIB. The wood-based virgin activated carbon was less effective than coconut- and coal-based carbon in adsorption nevertheless having larger pore volume and specific surface area than others carbons. The maximum adsorption capacity(X/M) of coal-based activated carbon for geosmin and 2-MIB was $1.2\sim1.9$ and $2.1\sim2.6$ times larger than coconut- and wood-based virgin activated carbon, respectively. Carbon usage rate (CUR) of coal-, coconut- and wood-based virgin activated carbons for geosmin and 2-MIB were 1.72 and 1.44 g/day, 1.72 and 2.05 g/day and 2.12 and 1.90 g/day, respectively. In the evaluation of adsorption isotherm of geosmin and 2-MIB for coal-, coconut- and wood-based virgin activated carbons, k value of 2-MIB was lower than geosmin, It menas 2-MIB is more difficult to remove by activated carbon adsorption than geosmin. The relationship of max. adsorption versus total pore volume of coconut- and wood-based virgin and used activated carbon for geosmin and 2-MIB were $y=264,459\times-79,047(R^2=0.95)$, $y=319,650\times-101,762(R^2=0.93)$.

Quality Characteristics of Nelumbo nucifera G. Tea White Bread with Hemicellulase (헤미셀룰라아제를 첨가한 백련차 식빵의 품질 특성)

  • Kim, Young-Sook;Kim, Mun-Yong;Chun, Soon-Sil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1294-1300
    • /
    • 2008
  • Nelumbo nucifera G. tea white breads were prepared by the addition of 0.01, 0.02, 0.03, and 0.04% hemicellulase to flour of the basic formulation. The experiments and control were then compared in terms of quality characteristics, including pH, total titratable acidity, fermentation power of dough expansion, specific volume, baking loss, moisture content, color, textural characteristics, external and internal surface appearances, and sensory qualities in order to determine the optimal ratio of hemicellulase in the formulation. There were no significant differences in pH and total titratable acidity of dough among the experiments. Fermentation power of dough expansion were increased as incubation time increased. Baking loss was the highest at the 0.04% addition level, while the lowest at the 0.01% level. As hemicellulase content increased, pH, hardness, and fracturability of bread decreased, while total titratable acidity, specific volume, and resilience increased. Water content and lightness were the highest in the control bread samples, and yellowness was maximal in the 0.01% group. Bread made by the addition of hemicellulase had significantly higher greenness and flavor than the control group. Color, consistency, and springiness of crumb, density and uniformity of crumb pore, softness, chewiness, overall acceptability, lotus leaf flavor, delicious taste, astringency, bitterness, and off-flavor were not significantly different among the samples. The results indicate that adding 0.02$\sim$ 0.03% hemicellulase in N elumbo nucifera G. tea white bread is optimal for quality and provides a product with reasonably high overall acceptability.

The Effect of Carbon Dioxide Leaked from Geological Storage Site on Soil Fertility: A Study on Artificial Leakage (지중 저장지로부터 누출된 이산화탄소가 토양 비옥도에 미치는 영향: 인위 누출 연구)

  • Baek, Seung Han;Lee, Sang-Woo;Lee, Woo-Chun;Yun, Seong-Taek;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.409-425
    • /
    • 2021
  • Carbon dioxide has been known to be a typical greenhouse gas causing global warming, and a number of efforts have been proposed to reduce its concentration in the atmosphere. Among them, carbon dioxide capture and storage (CCS) has been taken into great account to accomplish the target reduction of carbon dioxide. In order to commercialize the CCS, its safety should be secured. In particular, if the stored carbon dioxide is leaked in the arable land, serious problems could come up in terms of crop growth. This study was conducted to investigate the effect of carbon dioxide leaked from storage sites on soil fertility. The leakage of carbon dioxide was simulated using the facility of its artificial injection into soils in the laboratory. Several soil chemical properties, such as pH, cation exchange capacity, electrical conductivity, the concentrations of exchangeable cations, nitrogen (N) (total-N, nitrate-N, and ammonia-N), phosphorus (P) (total-P and available-P), sulfur (S) (total-S and available-S), available-boron (B), and the contents of soil organic matter, were monitored as indicators of soil fertility during the period of artificial injection of carbon dioxide. Two kinds of soils, such as non-cultivated and cultivated soils, were compared in the artificial injection tests, and the latter included maize- and soybean-cultivated soils. The non-cultivated soil (NCS) was sandy soil of 42.6% porosity, the maize-cultivated soil (MCS) and soybean-cultivated soil (SCS) were loamy sand having 46.8% and 48.0% of porosities, respectively. The artificial injection facility had six columns: one was for the control without carbon dioxide injection, and the other five columns were used for the injections tests. Total injection periods for NCS and MCS/SCS were 60 and 70 days, respectively, and artificial rainfall events were simulated using one pore volume after the 12-day injection for the NCS and the 14-day injection for the MCS/SCS. After each rainfall event, the soil fertility indicators were measured for soil and leachate solution, and they were compared before and after the injection of carbon dioxide. The results indicate that the residual concentrations of exchangeable cations, total-N, total-P, the content of soil organic matter, and electrical conductivity were not likely to be affected by the injection of carbon dioxide. However, the residual concentrations of nitrate-N, ammonia-N, available-P, available-S, and available-B tended to decrease after the carbon dioxide injection, indicating that soil fertility might be reduced. Meanwhile, soil pH did not seem to be influenced due to the buffering capacity of soils, but it is speculated that a long-term leakage of carbon dioxide might bring about soil acidification.