• Title/Summary/Keyword: total plastic rotation

Search Result 30, Processing Time 0.026 seconds

Personal technique for definite repair of complete unilateral cleft lip: modified Millard technique

  • Han, Kihwan;Park, Jeongseob;Lee, Seongwon;Jeong, Woonhyeok
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.1
    • /
    • pp.3-12
    • /
    • 2018
  • Background: Millard's rotation-advancement repair, which is used by many surgeons, can make a natural philtral column, but most surgeons use a modification of the rotation-advancement flap. The purpose of this article is to introduce a modification utilized by the authors and to provide detailed surgical procedure. Methods: We retrospectively reviewed 82 patients' medical records and presented surgical technique and outcomes. The main features of the authors' strategy are emphasizing horizontal length of the lip, orbicularis oris muscle duplication for improving the definition of the philtral column, overcorrection of domal portion than the non-cleft side in order to compensate for the recurrence during growth. Two judges rated two times the appearance of the patients' nose and lip using Asher-McDade aesthetic index. Intra- and interobserver reliabilities were determined using Cohen's kappa statistics. Results: All patients recovered eventually after surgery; however, two patients have a minor complications (wound infection in one patient, wound disruption due to trauma in the other patient). The improvement of the aesthetic results can be achieved with this modified Millard technique. Total mean scores of the Asher-McDade index was 2.08, fair to good appearance. The intraobserver reliabilities were substantial to almost perfect agreement and the interobserver reliabilities were moderate to almost perfect agreement. Conclusion: We modified Millard method for repair of complete unilateral cleft lip. The surgical outcomes were favorable in long-term follow-up. We hope our technique will serve as a guide for those new to the procedure.

Improvement of Shoulder Motion in Two-Stage Dual-Plane Implant-Based Breast Reconstruction followed by Radiation Therapy through Delayed Prepectoral Conversion

  • Jin Sol Park;Ung Sik Jin
    • Archives of Plastic Surgery
    • /
    • v.51 no.1
    • /
    • pp.52-61
    • /
    • 2024
  • Background Although prepectoral implant-based breast reconstruction has recently gained popularity, dual-plane reconstruction is still a better option for patients with poor-quality mastectomy skin flaps. However, shoulder morbidity is aggravated by subpectoral reconstruction, especially in irradiated patients. This study aimed to demonstrate shoulder exercise improvement in subpectoral reconstruction by delayed prepectoral conversion with an acellular dermal matrix (ADM) inlay graft technique at the time of expander-to-implant exchange after irradiation. Methods Patients with breast cancer treated for expander-to-implant exchange after subpectoral expander insertion and subsequent radiotherapy between January 2021 and June 2022 were enrolled. An ADM inlay graft was inserted between the pectoralis major muscle and the previously inserted ADM. The ADM was sutured partially overlapping the pectoralis muscle from the medial side with the transition part, to the muscle border at the lateral side. Perioperative shoulder joint active range-of-motion (ROM) for forward flexion, abduction, and external rotation was also evaluated. Results A total of 35 patients were enrolled in the study. Active shoulder ROM significantly improved from 163 degrees preoperatively to 176 degrees postoperatively in forward flexion, 153 to 175 degrees in abduction, and 69 to 84 degrees in external rotation. There was no difference in patient satisfaction regarding the final outcome between the conventional prepectoral reconstruction group and the study group. Conclusion Shoulder exercises in irradiated patients who underwent subpectoral reconstruction were improved by delayed prepectoral conversion using an ADM inlay graft. It is recommended that subpectoral reconstruction not be ruled out due to concerns regarding muscle contracture and shoulder morbidity in radiation-planned patients with poor mastectomy skin flaps.

Characteristics of Phosphorus Accumulation in Rotation System of Plastic Film House and Paddy Soils (시설재배지에서 윤답전환체계가 인산분포에 미치는 영향)

  • Lee, Yong-Bok;Lee, In-Bog;Hwang, Jun-Young;Lee, Kyung-Dong;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.1
    • /
    • pp.47-58
    • /
    • 2002
  • Much of the plastic film house soils in the southern part of the Korean peninsula are managed using a upland-paddy rotation culture system (hereafter, RS) to prevent salt accumulation in soil. However, information on the effects of RS on soil properties and environmental conservation is limited. In order to determine the effects of RS on soil properties, 22 fields under RS and 20 fields under a non-rotation system (hereafter, NRS) in plastic film houses were selected in Chinju, in southern Korea, and the P distribution characteristics were investigated, including the chemical properties. The RS contributed to the removal of water-soluble salts in the surface layer and to the redistribution of organic matter evenly in the soil profile. In the AP horizon, available phosphorus levels were $1,611mg\;kg^{-1}$ in RS and $1,789mg\;kg^{-1}$ in NRS, which markedly exceeds the optimum range for plant cultivation. Total P was lower in RS (average $4,593mg\;kg^{-1}$) than in NRS (average $5,440mg\;kg^{-1}$) and this decrease was taken to be an effect of RS. Inorganic P was the predominant form of P in both systems, followed by organic P and residual P. A soil profile showed that total and inorganic P concentrations decreased with depth in both systems. However, organic P increased withdepth in RS, which was in contrast to that noted in NRS. The increase in organic P with depth in RS implied that organically rather than inorganically derived phosphate moved through the soil. The concentrations of water-soluble P, Ca-P and Al-P were higher in NRS than in RS soil profiles, but the Fe-P concentration was higher in RS than in NRS, which might be affected by the anaerobic conditions found in paddy soils. In both systems, the Al-P form of extractable P predominated in the surface layer, followed by Ca-P, Fe-P and water-soluble P. With increasing depth, the composition rate of Ca-P to extractable P decreased to less than 10% in the 60-70cm depth, as Fe-P dominated at this level. The content of water-soluble P, potentially the main source of eutrophication, was higher in NRS than in RS. These results indicated that the RS used in plastic film houses contributed to the removal of water-soluble salts but only slightly decreased the phosphate concentration.

Performance Evaluation of Inelastic Rotation Capacity of Reinforced Concrete Beam-Column Connections (철근콘크리트 보-기둥 접합부의 비탄성 회전 능력에 대한 성능 평가)

  • Lee, Ki-Hak;Woo, Sung-Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 2007
  • This study summarizes the results of a research project aimed at investigating the inelastic rotation capacity of beam-column connections of reinforced concrete moment frames. A total of 91 test specimens for beam-column joint connections were examined in detail, and 28 specimens were classified as special moment frame connections based on the design and detailing requirements in the ACI 318-02 Provisions. Then the acceptance criteria, originally defined for steel moment frame connections in the AISC-02 Seismic Provisions, were used to evaluate the joint connections of concrete moment frames. Twenty-seven out of 28 test specimens that satisfy the design requirements for special moment frame structures provide sufficient strength and are ductile up to a plastic rotation of 0.03 rad. without any major degradation in strength. Joint shear stress, column-to-beam flexural strength ratio, and transverse reinforcement ratio in a joint all play a key role in good performance of the connections.

Beam-Column Connection with 1200mm Deep Multi-Reduced Taper Beam for Intermediate Moment Frame (깊이 1200mm급 변단면보의 중간모멘트골조용 내진접합부 개발)

  • Jung, Si-Hwa;Alemayehe, Robel Wondimu;Park, Man-Woo;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.4
    • /
    • pp.135-146
    • /
    • 2019
  • Deep beam has high section modules compared with shallow beam of the same weight. However, deep beam has low rotational capacity and high possibility of brittle failure so it is not possible to apply deep beams with a long span to intermediate moment frames, which should exhibit a ductility of 0.02rad of a story drift angle of steel moment frames. Accordingly, KBC and AISC limit the beam depth for intermediate and special moment frame to 750mm and 920mm respectively. The purpose of this paper is to improve the seismic performance of intermediate moment frame with 1200mm depth beam. In order to enhance vulnerability of plastic deformation capacity of deeper beam, Multi-Reduced Taper Beam(MRTB) shape that thickness of beam flange is reinforced and at the same time some part of the beam flange width is weakened are proposed. Based on concept of multiple plastic hinge, MRTB is intended to satisfy the rotation requirement for intermediate moment frame by dividing total story drift into each hinge and to prevent the collapse of the main members by inducing local buckling and fracture at the plastic hinge location far away from connection. The seismic performance of MRTB is evaluated by cyclic load test with conventional connections type WUF-W, RBS and Haunch. Some of the proposed MRTB connection satisfies connection requirements for intermediate moment frame and shows improved the seismic performance compared to conventional connections.

Seismic performance of high-strength steel framed-tube structures with bolted web-connected replaceable shear links

  • Lian, Ming;Cheng, Qianqian;Guan, Binlin;Zhang, Hao;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.323-339
    • /
    • 2020
  • In steel framed-tube structures (SFTSs), the plastic hinges at beam-ends cannot be adequately improved because of the large cross sections of spandrel beams, which results in the lower ductility and energy dissipation capacities of traditional SFTSs. To address this drawback, high-strength steel fabricated SFTSs with bolted web-connected replaceable shear links (HSFTS-SLs) have been proposed. In this system, shear links use conventional steel and are placed in the middle of the deep spandrel beams to act as energy dissipative components. In this study, 2/3-scaled HSFTS-SL specimens were fabricated, and cyclic loading tests were carried out to study the seismic performance of both specimens. The finite element models (FEMs) of the two specimens were established and the numerical results were compared with the test results. The results showed that the specimens had good ductility and energy dissipation capacities due to the reliable deformation capacities. The specimens presented the expected failure modes. Using a shorter shear link can provide a higher load-carrying capacity and initial elastic lateral stiffness but induces lower ductility and energy dissipation capacity in HSFTS-SLs. The performance of the specimens was comparable to that of the original sub-structure specimens after replacing shear links. Additionally, the expected post-earthquake recoverability and resilience of the structures could be achieved by replacing shear links. The acceptable residual interstory drift that allows for easy replacement of the bolted web-connected shear link was 0.23%. The bolted web-connected shear links had reliable hysteretic responses and deformation capacities. The connection rotation had a notable contribution to total link rotation. The results of the numerical analysis run for the proposed FEMs were consistent with the test results. It showed that the proposed FEMs could be used to investigate the seismic performance of the HSFTS-SL.

Performance Evaluation of Connection of Seismic Rectangular Steel Tube Column-H Beam Using One-side Bolts (원사이드 볼트를 이용한 내진 각형강관 기둥-H형강 보 접합부의 구조성능평가)

  • Shim, Hyun-Ju;Jang, Bo-Ra;Chung, Jin-An;Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.355-363
    • /
    • 2010
  • The objective of this study is to examine the structural performance on the Rectangular Steel Tube Column-to-H Beam connections using one-side bolts and T-stub. Although a rectangular steel tube comparing with a H-shaped steel has many advantages and is more efficient, its application is limited due to the lack of experiences and connection details. Existing steel moment connections using the rectangular steel tube are mainly using through plate diaphragms. Its processing of construction is so complicated that it is hard to apply in the field. In this study, the structural performance and the earthquake capacity for T-stub connection with one-side bolts were investigated. And it is performed a comparative analysis of strength, rigidity, total rotation and energy absorption capacity for the various connection details.

CLINICAL STUDY OF SURGICAL TREATMENTS ON CLEFT LIP AND CLEFT PALATE (순열 및 구개열 환자의 외과적 치료방법에 관한 임상적 연구)

  • Shin, Byung-Chol;Lee, Dong-Keun;Sung, Gil-Hyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.4
    • /
    • pp.529-545
    • /
    • 1996
  • In order to find the distribution, causes and treatments of cleft lip and/or palate, I analyzed 113 patients of cleft lip and/or palate who were treated in the Department of Oral and Maxillofacial Surgery, School of Dentistry, Wonkwang University, Iksan, Chunbuk, KOREA from September 1984 to August 1995. The obtained results were as follows. 1. In total 113 patients of cleft lip and/or palate, male patients were 63 cases (56%) and female patients were 50 cases (44%). 2. In distribution of cleft lip and/or palate, cleft lip patients were 30 cases (27%), cleft palate patient were 23 cases (20%) and cleft lip and palate patients were 60 cases (53%). 3. Unilateral cleft lip patients (78 cases: 87%) were larger than bilateral cleft lip. In unilateral cleft lip patients, lip side cleft lip patients (45 cases: 50%) were larger than right side cleft lip patients (33 cases: 37%). 4. Possible causes of cleft lip and/or palate were related with familial tendency, drug intoxication, malnutrition, old maternal age, stress and hypoxia during 4-8 weeks of pregnancy period. 5. The favorite treated method of cleft lip was Millard rotation-advancement method. Probably the most popular operated period was 3 months. 6. The useful operating technique of cleft palate was Wardill V-Y flap method. The most popular period has been 18 to 24 months. 7. In 11 patients with velopharyngeal insufficiency, hypernasality decreased by superior based pharyngeal flap pharyngoplasty. 8. Cleft alveolus was treated with autogenous and allogeneic bone graft. The most appropriate operation period was 9 to 11 years.

  • PDF

A Study on the Safety Estimation of Table Liner for Vertical Roller Mill Using HDM (구멍뚫기법을 이용한 수직형 롤러 분쇄기용 테이블 라이너의 안전성 평가에 관한 연구)

  • Lee Dong Woo;Hong Soon Hyeok;Cho Seok Swoo;Joo Won Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1221-1228
    • /
    • 2004
  • The vertical roller mill is the important machine grinding and mixing various crude materials in the manufacturing process of portland cement. Table liner is one of grinding elements of vertical roller mill and is subjected to the cyclic bending stress by rollers load and the centrifugal force by rotation of table. It demands $4{\times}10^7$ cycle but has $4{\times}10^6{\sim}8{\times}10^6$ cycle. It fractures at the edge of grinding path of outside roller. The repair expense for it amounts to $30\%$ of total maintenance of vertical roller mill. Therefore, this study shows the fracture mechanism of table liner for vertical roller mill using HDM and fatigue analysis and makes the estimation for safety of vertical roller mill.

Experimental Evalutation of the Seismic Performance of WUF-W Moment Connections with a Modified Access Hole (개선된 엑세스 홀 형상을 갖는 WUF-W접합부의 실험을 통한 내진성능평가)

  • Han, Sang Whan;Jung, Jin;Moon, Ki-Hoon;Kim, Jin Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.21-28
    • /
    • 2012
  • Welded Unreinforced Flange-Welded Web (WUF-W) connection is one of Special Moment Frame (SMF) specified in ANSI/AISC-358. From the experimental test of WUF-W connection specimens conducted by the previous study, fracture occurred in the beam flange before achieving total inter-story drift angle of 0.04radian required for Special Moment Frames (SMF) system even though the specimens satisfied the design and detailing requirement specified in ANSI/AISC-358. These results are estimated as problem of the access hole geometry. In this study, a full-scale WUF-W connection specimen was made with a modified access hole geometry, and tested with the same test setting and loading as the previous test. From test results, the deformation capacity of the tested WUF-W connection specimen exceeded 4%, which is required for connections in SMF system. Comparing with the WUF-W specimens of the previous study, the strain demand of the beam flange in the tested specimen was decreased and energy dissipation capacity of the specimen was improved.