• Title/Summary/Keyword: total organic carbon

Search Result 871, Processing Time 0.033 seconds

The Removal Characteristics of Organic Matter in Drinking Water Source by Coagulation and Ultrafiltration Process (응집 및 한외여과 공정에 의한 상수원수의 유기물질 제거 특성)

  • Kim, Hyun-Sik;Lim, Ji-Young;Kim, Jin-Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.5-10
    • /
    • 2018
  • This study was evaluated the characteristics of organic materials in the water source and the removal characteristics of organic materials by ultrafiltration including mixing and coagulation process. As a results of the study, it was found that the total organic carbon in the water source was mostly caused by the dissolved organic materials. As the specific ultraviolet absorbance value of the raw water was low, we found the soluble organic material has a high hydrophilic and low molecular material composition ratio. As a result of ultrafiltration experiment including mixing and coagulation process, the average removal rate of total organic carbon, dissolved organic carbon and ultraviolet absorbance at 254 were 37.9%, 30.3%, and 28.2%, respectively.

The Relationship between Phytoplankton Productivity and Water Quality Changes in Downstream of Nakdong River (낙동강 하류에서 식물플랑크톤 생산력과 수질 변화와의 관계)

  • 박홍기;정종문;박재림;홍용기
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.101-106
    • /
    • 1999
  • The relationship between primary productivity and changes in water quality was investigated at Mulgum station, a site downstream of the Nakdong River, Korea. Phytoplankton production was characterized by blooms of Microcystis aeruginosa during the summer and Stephanodiscus hantzschii during the winter. Primary production and secondary production by bacterioplankton ranged from 1.5~53.5 mg-C/ι day and 0.1~0.3 mg-C/ι day, respectively. Distribution of total organic carbon appeared to be highly correlated with phytoplankton biomass, especially during blooms of M. aeruginosa, when particulate organic carbon was 81% of total organic carbon and the main source of organic materials supplied into the water. The correlation coefficient between chlorophyll-a and BOD was 0.86. Thus it was concluded that autochthonous phytoplankton mostly affected the BOD level. Total bacterial numbers were also highly correlated with chlorophyll-a ($r^2$= 0.84) and the bacterial community appears to be regulated by phytoplankton biomass in this area.

  • PDF

Budget and distribution of organic carbon in Quercus serrata Thunb. ex Murray forest in Mt. Worak

  • Lee, Seung-Hyuk;Jang, Rae-Ha;Cho, Kyu-Tae;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.425-436
    • /
    • 2015
  • The carbon cycle came into the spotlight due to the climate change and forests are well-known for their capacity to store carbon amongst other terrestrial ecosystems. The annual organic carbon of litter production, forest floor litter layer, soil, aboveground and belowground part of plant, standing biomass, net primary production, uptake of organic carbon, soil respiration, etc. were measured in Mt. Worak in order to understand the production and carbon budget of Quercus serrata forest that are widely spread in the central and southern part of the Korean Peninsula. The total amount of organic carbon of Q. serrata forest during the study period (2010-2013) was 130.745 ton C ha-1. The aboveground part of plant, belowground part of plant, forest floor litter layer, and organic carbon in soil was 50.041, 12.510, 4.075, and 64.119 ton C ha-1, respectively. The total average of carbon fixation in plants from photosynthesis was 4.935 ton C ha-1 yr-1 and organic carbon released from soil respiration to microbial respiration was 3.972 ton C ha-1 yr-1. As a result, the net ecosystem production of Q. serrata forest estimated from carbon fixation and soil respiration was 0.963 ton C ha-1 yr-1. Therefore, it seems that Q. serrata forest can act as a sink that absorbs carbon from the atmosphere. The carbon uptake of Q. serrata forest was highest in stem of the plant and the research site had young forest which had many trees with small diameter at breast height (DBH). Consequentially, it seems that active matter production and vigorous carbon dioxide assimilation occurred in Q. serrata forest and these results have proven to be effective for Q. serrata forest to play a role as carbon storage and NEP.

Particle Flux in the Eastern Bransfield Strait in 1999, Antarctica

  • Kim, Dong-Seon;Kim, Dong-Yup;Shim, Jeong-Hee;Kang, Sung-Ho;Kang, Young-Chul
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.395-400
    • /
    • 2001
  • A time-series sediment trap was deployed at 1,034 m water depth in the eastern Bransfield Strait from December 25, 1998 to December 24, 1999. About 99 % of total mass fluxes were observed during the austral summer and fall (January, February, and March). The annual total mass flux was $49.2g\;m^{-2}$. Biogenic materials including biogenic silica, organic matter, and carbonate accounted for about 67% of total particle flux, and lithogenic materials contributed about 29%. Biogenic silica was the most dominant (42% of the total flux) in these components. The next most important biogenic component was organic matter, comprising 24% of total mass flux. Calcium carbonate contributed a small fraction of total mass flux, only 0.6%. The annual organic carbon flux was $5.2g\;C\;m^{-2}$ at 1,034m water depth. The annual primary production was estimated to be $21.6g\;C\;m^{-2}$ at the sediment trap site, which seems to be highly underestimated. About 5.5% of the surface water production of organic carbon sinks below 1,034m water depth.

  • PDF

Characteristics of Total Carbon and Total Organic Carbon Using Elemental Analyzer in Hyung-Do Intertidal Zone Sediments (원소분석기를 이용한 형도 퇴적물의 총탄소 및 총유기탄소 특성)

  • Lee, Jun-Ho;Park, Kap-Song;Woo, Han-Jun
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.673-684
    • /
    • 2012
  • Quantitative understanding of total carbon, total inorganic carbon and total organic carbon contained in ocean sediments is a basic data for interpretation of oceanic sediment environments. Elemental analyzer(EA) is frequently used for the analysis of carbon contents in inland soils and ocean sediments. Carbon and nitrogen contents of the soil reference material analyzed by an EA were 2.30% and 0.21% with standard deviations of 0.02 and 0.01, respectively. Relative standard deviations were 0.01 and 0.06, respectively, representing a high precision. Regression analysis of TOC and TC analysis results for the samples with TOC of less than 2.0% for the site in Hyung-Do showed a linear relationship with a slope of 0.9743($R^2$=0.9989, n=38), and the results of a relationship regression analysis between total organic carbon contents less than 0.5% and average grain size except for two samples showed a linear relationship with a slope of 0.0444($R^2$=0.6937 n=36). TOC contents of surface sediments were in the ranges of 0.10~1.67%(Average $0.26{\pm}0.37%$) with TOC values of 1.67% at S02 sampling site, 1.13% at S07 sampling site, and less than 1.00% at remaining sites. In the case of PC 01 core sediments, TOC showed the highest value of 0.20% near 70 cm. In the case of PC 02 core sediments, the highest value of 0.24% was indicated near 60 cm. The analysis method of organic carbon obtained from Hyung-Do Intertidal zone sediment sample results may be considered applicable to an organic carbon analysis for ocean sediments and useful for organic carbon analysis experiments of ocean sediments with a reduction in time required for the analysis and a high precision coupled with a high accuracy.

Organic Carbon Budget during Rainy and Dry Period in Paldang Reservoir (강우기 및 평수기의 팔당호 유기물 수지산정)

  • Lee, U-Hee;Jung, Dong-Il;Park, Hae-Kyung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.272-281
    • /
    • 2004
  • The Primary production and budget of organic carbon at rainy and dry period was surveyed to evaluate the contribution of primary production in Paldang Reservoir. Primary productivity of phytoplankton showed remarkable differences depending on sampling dates and sites, ranged from 110 to 2,701 mgC $m^{-2}day^{-1}$. In the rainy period of April and August when there had been frequent rainfall resulting short hydraulic retention time and low algal biomass in Paldang Reservoir, autochthonous organic carbon occupied very low ratio, farming approximately 7 percent of total inflow of organic carbon. However in June when it almost never rained and dominant algal species changed from diatoms to green algae and small flagellates, autochthonous organic carbon from primary productivity of phytoplankton formed 29 percent of total inflow of organic carbon.

Dissolved Organic Matters Characteristics in Freshwater

  • Park, Je-Chul;Oh, Young-Taek;Bae, Sang-Deuk;Ryu, Dong-Kyeong
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2004.05a
    • /
    • pp.26-26
    • /
    • 2004
  • This study was conducted to evaluate the characteristics of dissolved orgamc matters based on their origins. The dissolved organic carbon(DOC) represents an index for dissolved organic matter and basically regarded as a source of organic pollution. The monthly variations and vertical profiles of dissolved organic carbon(DOC) in Kumoh reservoir were surveyed from May 2001 to April 2002. In addition, other areas such as river, reservoir, sewage and industrial wastewater were also surveyed in summer 2001. Kumoh reservoir was divided with depth into three layers .: epilimnion, metalimnion and hypolimnion. The proportion of total DOC(T-DOC) was classified by labile DOC(L-DOC) and refractory DOC(R-DOC) on the basis of long-term incubation. DOC of freshwater and Kumoh reservoir was ranged to be 1.6~4.1 mgC/L and 2.1~4.0 mgC/L, respectively. L-DOC accounted for 3~30% of DOC from watershed. Therefore, refractory dissolved organic carbon(R-DOC) was major component of DOC in the watershed. The decomposition rate(k) ranged from 0.008 $d^{-1}$ to 0.083 $d^{-1}$ in Kumoh reservoir. The highest decomposition rate(k) was observed at River Hoein III freshwater. Therefore, modified total organic carbon analyzer is needed to be applied for effective management of dissolved organic matter.

  • PDF

Time Resolved Analysis of Water Soluble Organic Carbon by Aerosol-into-Mist System (분진-미스트 시스템을 이용한 실시간 수용성 유기탄소 분석)

  • Cho, In-Hwan;Park, Da-Jeong;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.497-507
    • /
    • 2015
  • Real-time and quantitative measurement of the chemical composition in ambient aerosols represents one of the most challenging problems in the field of atmospheric chemistry. In the present study, time resolved application by Aerosol-into-Mist System (AIMS) following by total organic carbon analyzer (TOC) has been developed. The unique aspect of the combination of these two techniques is to provide quantifiable water soluble organic carbon (WSOC) information of particle-phase organic compounds on timescales of minutes. We also demonstrated that the application of the AIMS method is not limited to water-soluble organic carbon but inorganic ion compounds. By correlating the volume concentrations by optical particle sizer (OPS), water soluble organic carbon can be highly related to the secondary organic products. AIMS-TOC method can be potentially applied to probe the formation and evolution mechanism of a variety of SOA behaviors in ambient air.

Runoff Characteristics of Refractory Organic Matters from Kyongan River Watershed during Rainfall Event and Dry Season (경안천 유역의 강우 시, 비 강우 시 난분해성 유기물질 유출 특성)

  • Kim, Taewon;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.397-404
    • /
    • 2011
  • This research investigates the runoff characteristics of refractory organic matters from Kyongan river watershed. Samples were taken 27 times during dry season, 4 times during rain events and analyzed into flow rate, Dissolved Organic Carbon (DOC), Particulate Organic Carbon (POC), Refractory Dissolved Organic Carbon (R-DOC), Refractory Particulate Organic Carbon (R-POC). R-DOC during dry season was the lowest in winter and showed a rising tendency in spring and R-POC changes less than R-DOC. The mass loading of Refractory Total Organic Carbon (R-TOC) in summer takes approximately 80% of 1 year mass loading. During rainy season, EMC of R-DOC was similar to R-DOC in dry season. But maximum EMC of R-POC was 12 times higher than that of R-POC in dry season. Results of the survey show that enhanced management of R-DOC in dry season and R-POC in rainy season is needed.