• 제목/요약/키워드: total maximum daily load (TMDL)

검색결과 88건 처리시간 0.025초

탐진강의 총량규제를 위한 오염원별 수계${cdot}$행정구역 허용부하량과 삭감부하량 할당에 관한 연구 (Study on Allocation of Pollution Discharges by Watersheds and Administrative Regions with Pollution Sources for the TMDL (Total Maximum Daily Load) in Tamjin River)

  • 황금록;황대호;백도현;이홍근
    • 한국환경보건학회지
    • /
    • 제30권5호
    • /
    • pp.449-454
    • /
    • 2004
  • This study is to calculate Allocation of Pollution Discharges by administrative region for the TMDL (Total Maximum Daily Load) on Tamjin River. TMDL has the water quality target and value ($BOD_5$, 1 ppm) and is calculated by the QUAL2E model. The expected TMDL for Tamjin River is 1,532,360 kg/day. The calculation showed that the main pollutants are due to the non-point sources in Tamjin River and the aqua-farms are another important sources near the bay. And sources from population and livestock should be reduced, especially aqua-farm source should be managed and eliminated first which is over 14,000 ton/day.

수질오염총량관리 단위유역별 오염물질 배출부하량 특성분석 - 금강수계를 대상으로 (Characterization on the Pollution Discharge Load at the Unit Watershed for the Management of Total Maximum Daily Loads - in Guem River Basin)

  • 박준대;최옥연;오승영
    • 한국물환경학회지
    • /
    • 제28권6호
    • /
    • pp.786-795
    • /
    • 2012
  • Water quality management should be focused on the pollution concentrated area so that the improvement of water quality can be achieved effectively for the management of Total Maximum Daily Loads (TMDLs). It is necessary to consider discharge characteristics in the TMDL plan. This study analysed discharge characteristics such as pollution generation and discharge load density, and reduction potential by each unit watershed, and categorized the unit watershed into four groups according to its discharge load characteristics. This analysis can be used as helpful information for the prioritization of pollution reduction area and selection of pollution reduction measures in the development of TMDL plans.

하천유지유량을 이용한 일최대 오염허용부하량 산정 방안 (Calculation of Total Maximum Daily Load using Instreamflow Requirement)

  • 정은성;김경태;김상욱;이길성
    • 한국물환경학회지
    • /
    • 제24권3호
    • /
    • pp.317-327
    • /
    • 2008
  • This study developed the methodology to calculate the total daily maximum load (TMDL) using the instreamflow requirement because the previous TMDLs were too simple to easily achieve. Instreamflow requirement which was the average low flow ($Q_{275}$) in the previous planning cannot consider the seasonal variation of streamflow. Therefore, this study used the instreamflow requirement which is a maximum value among hydrologic drought flow ($Q_{355}$), and environmental flows for ecology and scenery. The environmental flows for ecology were calculated using Physical HABitat SIMulation system (PHABSIM) which can estimate the necessary flow for fish survival by life cycle. Using the proposed method, all monthly TMDLs of streams in the Anyangcheon were calculated for the application.

우리나라 오염총량관리제도의 개선 및 적용: 1. 안양천 유역의 오염부하량 산정 (Improvement and Application of Total Maximum Daily Load Management System of Korea: 1. Calculation of Total Amount of Pollutant Load in the Anyangcheon Watershed)

  • 김경태;정은성;김상욱;이길성;성진영
    • 한국물환경학회지
    • /
    • 제25권6호
    • /
    • pp.972-978
    • /
    • 2009
  • This study modifies the present total maximum daily load (TMDL) system of Ministry of Environment and applies to the Anyangcheon watershed. Hydrologic Simulation Program-FORTRAN (HSPF) model is used to simulate both runoff and non-point source pollution, simultaneously, instead of QUAL2E. The drought flow (355th daily flow) is proposed for the target water quantity since it is easier to satisfy low flow (275th daily flow) for the target water quality than drought flow. The increase of discharge is more than the increase of pollutant load except for the period under low flow. The measured unit loads for non-point source are used to consider the regional runoff characteristics. The measured water quantity and quality data are used since the ministry of environment supports only water quality. This analysis results show some reasons for the improvement of the present TMDL system of Korea.

경안천 유역 수질 및 이행평가 자료를 통한 임의적 오염총량관리제도 시행의 성과 분석 (Effects of the Voluntary Scheme of Total Maximum Daily Load based on Water Quality and Annual Evaluation data in the Gyeongan Watershed, South Korea)

  • 이범연;이창희
    • 한국물환경학회지
    • /
    • 제37권4호
    • /
    • pp.263-274
    • /
    • 2021
  • This study presents the achievements and limitations of the voluntary-based Total Maximum Daily Load (TMDL) through statistical analysis of water quality monitoring data and performance assessments of TMDL plans implemented in the Gyeongan watershed. The results clearly showed that responsible local governments complied the allocated TMDL and the designated water quality goals were successfully achieved in the required period. This was possible because the Ministry of Environment provided innovative incentives, such as, relaxations of the existing tight land-use regulations and full-scale financial aids for constructing and operating public treatment facilities to draw local government voluntary participation. However, a couple of problems which decreased the effectiveness and efficiency of the voluntary TMDL were identified. The different TMDL implementation schedules between upstream (Yongin) and downstream (Gwangju) governments caused delay in water quality improvement and exaggerated TMDL allocation to the local development which made excessive investment in the treatment facilities. Although it is not directly related to the voluntary scheme, technical methods for establishing and assessing the water quality goals should be improved so that the effects of flow conditions on water quality are properly assessed. We expect that results of this case study contribute to developing a more effective voluntary-based scheme for the implementation of the so-called 'tributary TMDL' in the future.

개별배출시설 삭감잠재량 분석을 통한 수질오염총량제의 민간참여 활성화 방안 연구 (A Study on the Activation of Non-government Participation in Total Maximum Daily Load System using Private Discharge Facilities Reduction Potential Analysis)

  • 김홍태;신동석;김현정;최인욱;이미선;김용석
    • 한국물환경학회지
    • /
    • 제31권6호
    • /
    • pp.715-722
    • /
    • 2015
  • Four major river basin in Korea has been managed with Total Maximum Daily Load(TMDL) System. Water quality indicators as targeted pollutants for TMDL were BOD and TP. In order to satisfy water quality criteria, government allocation using public treatment facilities and its action plan has been used. However, the role to improve water quality were recently faced to its limitation. It is time to require the role of non-government allocation in private discharge facilities to control good water quality. This study investigated three different scenarios in reduction demands of non-government allocations about industry and private sewages. The three different scenarios were discharge under 1) legal water quality standard, 2) water quality level in 2011 and 3) current water quality level with maximum value in group. The results showed that reduction potential in water discharge for TP indicator was 1,118kg/day, under second scenario with 20% of deduction. This results arrived at 42% of whole reduction potential costs and 0.012mg/L improvement in water quality. In conclusion, to intrigue voluntary participation in non-government allocation, various benefits such as tax reduction, tax exemption, and water quality trading should be provided.

수질오염총량관리를 위한 비점배출계수 산정 - 특정 기준유량 시기의 강우배출비 (Estimation of Nonpoint Discharge Coefficient for the Management of Total Maximum Daily Load - Rainfall Discharge Ratio on the Specific Design Flow)

  • 박준대;박주현;류덕희;정동일
    • 한국물환경학회지
    • /
    • 제24권4호
    • /
    • pp.452-457
    • /
    • 2008
  • Nonpoint source (NPS) pollution is caused by rainfall moving over and through the ground. As the runoff moves, it picks up and carries away various pollutants from NPS. The discharge pattern of NPS pollutant loads is affected by the distribution of the rainfall during the year. This study analysed relationship between the rainfall event and the stream flow rate, and estimated the rainfall discharge ratio on the specific design flow which can be used as nonpoint discharge coefficient for the estimation of NPS pollution load. It is considered that nonpoint discharge coefficient can be effectively used for the calculation of NPS pollution load at the time of water quality modelling for the management of Total maximum daily load (TMDL).

오염총량관리를 위한 의사결정 지원시스템 적용 (Application of a Decision Support System for Total Maximum Daily Loads)

  • 이혜영;박석순
    • 한국물환경학회지
    • /
    • 제20권2호
    • /
    • pp.151-156
    • /
    • 2004
  • A decision support system, Watershed Analysis Risk Management Framework(WARMF), was applied to the Kyungan Stream watershed, a tributary of Lake Paldang, for calculation of total maximum daily loads(TMDL). The WARMF system was developed by Systech Engineering, USA, and has been successfully used in several watersheds, for TMDL studies. The study area was divided into 14 sub-basins, based on digital elevation model(DEM). The integrated watershed and stream model of WARMF was validated by flow and BOD data measured during the year of 1999. There were reasonable agreements between model results and field data, both in water flow and BOD. The validated Kyungan WARMF was extensively utilized to study the quantitative relationship between waste loads and receiving water quality. Based on TMDL guideline at Paldang Lake and Kyungan Stream, the water quality criterion were set to be 3.0mg/L, 3.5mg/L, and 4.0mg/L at the watershed outlet. The allowable waste loads of BOD, both from point and non-point sources, were determined at each water quality criterion. From this study, it was concluded that the WARMF provided several advantages over the conventional application of watershed and stream models for TMDL study, such as time variable simulations, multiple possible soutions, and reduction loads for goal water quality, etc.

오염총량관리 할당부하량 초과지역의 최종 평가기준에 관한 연구 (A Study on the Final Evaluation Criteria of Allocation Exceedance Regional in Total Maximum Daily Load)

  • 오승영;한미덕;김석규;안기홍;김옥선;김용석;박지형
    • 한국물환경학회지
    • /
    • 제32권5호
    • /
    • pp.450-457
    • /
    • 2016
  • The Total Maximum Daily Load (TMDL) is a watershed management system that involves the establishment of the target water quality, the calculation of permission loading (allocation loading), and the control of total pollutants for each unit watershed. Allocation loading is assessed through the comprehensive implementation assessment of the previous year's plan. Assessment results are used for follow-up management measures such as the limit of development and updating of TMDL Management Implementation Plans for the next planning period. Although detailed assessment criteria are important, they are not currently available. Therefore, we suggested assessment criteria by comparing two methods('integration method' and 'separation method') using combination point and non-point discharge loading. We also examined the penalty criteria considering controllable load local government and updating methods of the TMDL Management Implementation Plan for the next planning period.

수질오염총량관리제 시행에 있어서 중앙정부와 지방자치단체 간 역할정립 (Establishment of Role Between Central and Local Government for Implementation of Total Maximum Daily Load)

  • 이상진
    • 대한환경공학회지
    • /
    • 제33권5호
    • /
    • pp.378-383
    • /
    • 2011
  • 수질오염총량관리제는 유역에 설정된 오염물질 항목별 목표수질을 만족할 수 있도록 배출부하량을 총량적으로 관리하기 위해서 도입되었다. 그 동안 4대강 수계를 대상으로 수질오염총량관리제를 시행하면서 여러 가지 문제점이 발생되었다. 이러한 문제점들이 일부 보완되었지만, 아직도 중앙정부와 지방자치단체간의 역할에 대한 부분은 명확하게 정립되어 있지않다. 따라서 본 연구는 수질오염총량관리제의 효율적인 시행을 위한 중앙정부와 지방자치단체간의 역할을 제시하였다. 먼저, 중앙정부는 국가하천의 주요지점에 수질기준 및 대상항목을 포함하는 환경기준을 설정하고, 지방자치단체는 해당유역에서 대상항목의 목표수질을 설정해야 한다. 또한, 지방자치단체는 지류하천의 수질개선정도를 파악하기 위하여 하천의 수질 및 유량모니터링을 지속적으로 시행하여야 한다. 특히, 중앙정부의 유역환경청은 전체 수계를 대상으로 수질오염총량관리 기본계획을 수립하여야 하며, 지방자치단체는 목표수질을 초과하는 단위유역을 대상으로 시행계획을 수립하여야 한다. 수질 오염총량관리 이행평가는 기초자치단체에서 지류하천의 수질 및 유량을 모니터링을 통하여 매년마다 단위유역의 목표수질 만족여부 만을 평가해야 한다. 수질오염총량관리 이행평가보고서는 단위유역의 목표수질 초과에 대한 원인분석을 포함하여 계획기간 최종년도에 유역환경청에 제출하여야 한다.