• Title/Summary/Keyword: total intensity of magnetic field

Search Result 22, Processing Time 0.029 seconds

A Study on the Magnetic Field Intensity and BER from Wayside Device to On-board Device about the Train Speed in ATP System (ATP 시스템에서 열차속도에 따른 지상자에서 차상자까지의 자계의 세기 및 비트오류율에 관한 연구)

  • Kim, Min-Seok;Lee, Sang-Hyeok;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1803-1808
    • /
    • 2010
  • Electric railway system consists of rolling stock, track, signal and catenary system. ATP system in railway signaling system is the important one grasping the position and velocity of a train. The wayside device of ATP system is installed between rails. Recently, the research about increasing train speed has been developed in total departments of the railroad systems. The study on the information transmission between on-board device and wayside device is required for increasing the train speed in the ATP system. When the train speed is increased as to same transmission distance, the problem on information transmission occurs because the transmission time is decreased. In case that the transmission distance is extended, the transmission time is decreased with respect to the train speed. Therefore, we have to define the standard magnetic field intensity as to the train speed in order to transmit correctly telegram. In this paper, the transmission distance for the telegram is suggested on the basis of the train speed. Also, the standard magnetic field intensity from the wayside device to on-board device is proposed by using transmission distance regarding the train speed in the ERTMS/ETCS system by using Matlab program. Also, BER according to the train speed is presented by calculating electric field intensity from the magnetic field intensity.

Geomagnetic Field Monitoring at King Sejong Station, Antarctica (남극 세종기지에서의 지자기 모니터링)

  • Kim, DonIl;Jin, YoungKeun;Nam, SangHeon;Lee, JooHan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.11-21
    • /
    • 2004
  • The variation of geomagnetic field and absolute magnetic field at the geomagnetic observatory of King Sejong Station has been measured with 3-component ring core fluxgate magnetometer, proton magnetometer and D-I magnetometer. With data obtained from King Sejong Station during 2003, thediurnal and annual variations of geomagnetic field were researched and compared with those at other observatories. The deviation of daily variation of magnetic field in antarctica decreased gradually during winter season due to sun effect. The rates of componental annual variation of magnetic field at King Sejong Station were calculated using the least-square method under the assumption that the annual variation of magnetic field is linear. The rates are -55.93 nT/year in horizontal intensity, -0.87 min./year in declination, 58.30 nT/year in vertical intensity, and -69.85 nT/year in total intensity of magnetic field. A remarkable variation was caused by the magnetic storms occurred on 29~30 October, which were so powerful that the variation was observed in mid latitudes as well as high latitudes. The values of variation are generally 1500 2000 nT in Antarctica including King Sejong Station, 350 500 nT in East Asia. The measurement of absolute magnetic field shows that ring core fluxgate magnetometer has relatively large error range under cold temperature.

  • PDF

Wobble and Nonconcentricity Effects in Eddy Current Test of Tubes or Rods (튜브, 봉류의 와전류 탐상시 시편 변위에 의한 신호 변화)

  • Kim, Y.J.;Kim, Y.G.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.2
    • /
    • pp.37-41
    • /
    • 1989
  • The purpose of this paper is to estimate the effect of wobble and nonconcentricity of tubes or rods in eddy current test with encircling test coils. Because the eddy current induced in a sample is related to the total magnetic flux linkages, the information about magnetic field distribution in a coil is important. In theoretical study, magnetic field distribution in a single turn coil was calculated and variation of impedance according to the difference of sample positions was presumed. Magnetic field intensity at inside of a solenoidal coil was measured and compared with the theoretical estimation. In experiment, impedance loci of a coil encircling an aluminum rod were measured at different sample positions. The effect of crack positions was examined at same sample positons.

  • PDF

Finite Element Analysis of Electromagnetic Systems Considering Hysteresis Characteristics (히스테리시스 특성을 고려한 전자계의 유한 요소 해석)

  • Kim, Hong-Gyu;Hong, Seon-Gi;Jeong, Hyeon-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.118-123
    • /
    • 1999
  • This paper describes the finite element procedure including the magnetic hysteresis phenomena. The magnetization-dependent Preisach model is employed to simulate the magnetic hysteresis and applied to each elements. Magnetization is calculated by the Fibonacci search method for the applied field in the implementation of the magnetization-dependent model. This can calculate the magnetization very accurately with small iteration numbers. The magnetic field intensity and the magnetization corresponding to the magnetic flux density obtained by the finite element analysis(FEA) are computed at the same time under the condition that these balues must satisfy the constitutive equation. In order to reduce the total calculation cost, pseudo-permeability is used for the input for the FEA. It is found that the presented method is very useful in combining the hysteresis model with the finite element method.

  • PDF

Statistical Studies on the Physical Parameters and Oscillations of Sunspots and Flares

  • Cho, Il-Hyun;Cho, Kyung-Suk;Kim, Yeon-Han
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.41.2-41.2
    • /
    • 2016
  • We perform three statistical studies on the physical properties and oscillations in the confined plasma such as a photospheric sunspot and confined coronal loop. From the statistical studies on the sunspot umbra and its oscillation, we find that (1) the total magnetic flux inside the umbra for the three groups increases proportionally with the powers of the umbral area and the power indices in the three groups significantly differ from each other; (2) the three groups have different characteristics in their umbral area, intensity, magnetic field strength, and Doppler velocity as well as their relationships; (3) the mean frequency of the umbral oscillations increases with the umbral mean magnetic field strength and height; (4) the time delay of the core intensity of Fe I absorption line relative to the continuum which are de-convolved with the frequency range higher than 3.5 mHz is mostly positive, implying that the photospheric umbral oscillations are likely upwardly propagating; (5) the umbral mean plasma beta ranges approximately 0.6-1.1 and does not vary significantly from pores to mature sunspots. From the comparative study on the quasi-periodic pulsations (QPPs) in the solar and stellar flares, (6) we find that the power index of the periods scaling the damping times observed in the stellar QPPs is consistent with that observed in the solar QPPs, suggesting that physical mechanisms responsible for the stellar QPPs are likely the magneto-hydrodynamic oscillation of solar coronal loops.

  • PDF

A Synthesized Isotropic Pattern Antenna for Electromgnetic Environment Measurements (전자파환경 측정을 위한 합성 등방성 패턴 안테나)

  • 윤현보;최익권;임계재;백낙준;유희준
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.1
    • /
    • pp.20-27
    • /
    • 1992
  • A synthesized isotropic pattern antenna can be realized by arrangeing $\lambda$/ 2 dipole along each x, y, z axis. The sleeve type $\lambda$/ 2 dipole antenna is used as a basic element for a proper impedance matching at feeding point and minimum mutual coupling effect between each element at 820 MHz - 895 MHz band. The total electric field intensity radiated from the designed isotropic pattern antenna is drived from the magnetic vector potential which is produced by each sleeve $\lambda$/ 2 dipole in the far field. This total electric field intensity is inversely proportional only to distance $\gamma$from the origin of coordinates, and pattern factor variation is less than 2.1dB. The measured value of total electric field variation depending on pattern factor is less then 2.8dB, and the difference between the calculated and measured value is 0.7dB.

  • PDF

Effect of change intensity fields of magnetized water on fresh and hardened characteristics of concrete

  • Ali S. Ahmed;Mohamed M.Y. Elshikh;Mosbeh R. Kaloop;Jong Wan Hu;Walid E. Elemam
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.97-110
    • /
    • 2023
  • This study investigates experimentally the impact of magnetized water (MW) on the fresh and hardened characteristics of concrete. Five types of MW are produced using magnetic fields of 1.4 and 1.6 Tesla for treating water with 100, 150, and 250 cycles. The concrete properties are assessed using the slump test, compressive strength test, scanning electron microscopy (SEM) analysis, energy dispersive X-ray analysis (EDX), and Fourier transform infrared spectrophotometry (FTIR). Furthermore, the chemical-physical characteristics of tap water (TW) and MW are evaluated. The results showed the magnetic field intensity has a significant impact on the magnetization effect; the best magnetizing conditions were found when TW was exposed successively to magnetic fields of 1.6 T and 1.4 T for 150 cycles. In addition, 150 MW cycles can be used to improve the compressive strength and workability of concrete by 40% and 17%, respectively. pH, total dissolved solids, and electrical conductivity improved by 15%, 17%, and 7%, respectively, when using MW. Additionally, MW can be used to enhance cement hydration chemical processes and made concrete's structure denser.

Properties of polarised emission in radio relics

  • Fernandez, Paola Dominguez
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.64.2-64.2
    • /
    • 2021
  • Radio relics track cosmological shocks propagating through the intracluster medium. They are among the largest and most polarised sources in the radio sky reaching polarisation fractions up to ~60%. High-resolution observations in total intensity and in polarisation show complex structures on kiloparsec scales. Nevertheless, the relation between the observed features and the underlying morphology of the magnetic field is not clear. In this work we three dimensional MHD-Lagrangian simulations to study the polarised emission produced by a shock wave that propagates through a turbulent medium that resembles the intracluster medium. We find that the synchrotron emission produced in a shocked turbulent medium can reproduce some of the observed features in radio relics. Our work confirms that radio relics can also be formed in an environment with a tangled magnetic field. We also study the effect of intrinsic Faraday Rotation and the depolarisation of the source. Finally, we show how our results depend on the angular resolution of observations.

  • PDF

Variation of Solar, Interplanetary and Geomagnetic Parameters during Solar Cycles 21-24

  • Oh, Suyeon;Kim, Bogyeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.101-106
    • /
    • 2013
  • The length of solar cycle 23 has been prolonged up to about 13 years. Many studies have speculated that the solar cycle 23/24 minimum will indicate the onset of a grand minimum of solar activity, such as the Maunder Minimum. We check the trends of solar (sunspot number, solar magnetic fields, total solar irradiance, solar radio flux, and frequency of solar X-ray flare), interplanetary (interplanetary magnetic field, solar wind and galactic cosmic ray intensity), and geomagnetic (Ap index) parameters (SIG parameters) during solar cycles 21-24. Most SIG parameters during the period of the solar cycle 23/24 minimum have remarkably low values. Since the 1970s, the space environment has been monitored by ground observatories and satellites. Such prevalently low values of SIG parameters have never been seen. We suggest that these unprecedented conditions of SIG parameters originate from the weakened solar magnetic fields. Meanwhile, the deep 23/24 solar cycle minimum might be the portent of a grand minimum in which the global mean temperature of the lower atmosphere is as low as in the period of Dalton or Maunder minimum.

A Model Calculation of Solar Microwave Burst Structure

  • Choi, Yong-Seok
    • Bulletin of the Korean Space Science Society
    • /
    • 1995.04a
    • /
    • pp.21-21
    • /
    • 1995
  • The structures of 17GHz microwave burst for bipolar sunspots have investigated. which included the effects of the projected shapes of radio sources as they traverse across the solar disk using a magnetic loop employing a model of solenoid coils. An ensemble of high-energy electrons confined in the loop be assumed. The projected brightnesls distributions of gyrosynchrotron emission in x- and o-modes are computed and converted into total intensity and circular polarization difference at 17GHz for various heliocentric distances using numerical integration of the transfer equation along the line of sight. The results of computations at 17GHz for optical thin case will be presented. and the effects of the orientation of the loop will be discussed in detail, as well as the effect of size, position, Structure, and polarization of the emission. Also the results of the various physical P8lrameters such as the strength of magnetic field. high and low energy cut-off of accelerated electrons. spectral index and density of electrons will be preslmted. After comparing the results of model calculation with observations. we found that the observations can be well explained in terms of a loop model and its projection effect.effect.

  • PDF