• Title/Summary/Keyword: total harmonic

Search Result 571, Processing Time 0.024 seconds

A Single-Stage AC-DC Power Module Converter for Fast-Charger (급속충전기용 파워 모듈을 위한 단일단 AC-DC 컨버터)

  • LE, Tat-Thang;Choi, Sewan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.384-390
    • /
    • 2022
  • In this study, a single-stage, four-phase, interleaved, totem-pole AC-DC converter is proposed for a super-fast charger station that requires high power, a wide voltage range, and bidirectional operation capabilities and adopts various types of electric transport vehicles. The proposed topology is based on current-fed push-pull dual active bridge converter combined with the totem-pole operation. Owing to the four-phase interleaving effect, the bridge on the grid side can switch at 0.25, 0.5, and 0.75 to achieve a ripple-free grid current. The input filter can be removed theoretically. Switching methods for the duty of the secondary-side duty cycle are proposed, and they correspond to the primary duty cycle for reducing the circulating power and handling the total harmonic distortion. Therefore, the converter can operate under a wide voltage range. Experimental results from a 7.5 kW prototype are used to validate the proposed concept.

3-Phase Single Stage AC-DC Converter for Small Wind Turbine System (소형풍력발전을 위한 3상 단일전력단 교류-직류 컨버터)

  • Yu-Jin Moon;Beom-Su Park;Sang-Kyu Kim;Eun-Soo Kim;Deok-Jin Lim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.68-75
    • /
    • 2023
  • This paper proposes a three-phase single-stage AC-DC converter for the small wind generation system. Input power factor improvement and insulated output can be implemented with the proposed three-phase single-stage AC-DC converter under the wide power generation voltage (80-260 Vac) and frequency (10-42 Hz) in a small wind power generation (WPG) system. The proposed converter is also capable of zero-voltage switching in the primary-side switches and zero-current switching in the secondary-side diodes by phase-shift control at a fixed switching frequency. In addition, it is possible to control a wide output voltage (Vo: 39 VDC-60 VDC) by varying the link voltage and improving the input power factor (PF) and the total harmonic distortion factor (THDi). Simulation and experimental results verified the validity of the proposed converter.

On the wave propagations of football game ball after contacting with the player foot

  • Lei Sun;Cancan Wei;Fei Liu;Lijun Wang;Bo Ren
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.529-542
    • /
    • 2023
  • Wave propagation with high transverse deflection could affect the stability of the ball in its trajectory. For low stiffness balls similar to soccer and volleyball balls, the waves are more noticeable in comparison to other balls like ping-pong ball. On the other hand, the soccer balls are under heavy impact loads from shoots and contacting different objects in the field. The maximum recorded speed of a soccer ball after kicking is the 211 km/hr and the average maximum speed is around 112 km/hr. Therefore, in such speeds the aerodynamic forces become important which are directly related to geometrical shape of the ball. In this regard, the wave propagation in soccer ball is examined in the current study using large deformation shear deformable formulations. Classical relations of stress-strain components are taken into consideration along with minimum total energy principle. The final derived relations were solved by using harmonic differential quadrature method. The results are generally presented ion term of phase velocity as function of different influencing parameters of the materials, geometry and mass of the ball.

Regional Ionosphere Modeling using GPS, Galileo, and QZSS (GPS, Galileo, QZSS를 이용한 지역 전리층 모델링)

  • Byung-Kyu Choi;Dong-Hyo Sohn;Junseok Hong;Jong-Kyun Chung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.159-165
    • /
    • 2024
  • The Global Navigation Satellite System (GNSS) has been used as a tool to accurately extract the Total Electron Content (TEC) in the ionosphere. The multi-GNSS (GPS, GLONASS, BeiDou, Galileo, and QZSS) constellations bring new opportunities for ionospheric research. In this study, we develop a regional ionospheric TEC model using GPS, Galileo, and QZSS measurements. To develop an ionospheric model covering the Asia-Oceania region, we select 13 International GNSS Service (IGS) stations. The ionospheric model applies the spherical harmonic expansion method and has a spatial resolution of 2.5°×2.5° and a temporal resolution of one hour. GPS TEC, Galileo TEC, and QZSS TEC are investigated from January 1 to January 31, 2024. Different TEC values are in good agreement with each other. In addition, we compare the QZSS(J07) TEC and the Center for Orbit Determination in Europe (CODE) Global Ionosphere Map (GIM) TEC. The results show that the QZSS TEC estimated in the study coincides closely with the CODE GIM TEC.

A study on wafer processing using backgrinding system

  • Seung-Yub Baek
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • Recently, there has been extensive research conducted on the miniaturization of semiconductors and the improvement of their integration to achieve high-quality and high-performance electronic devices. To integrate and miniaturize multiple semiconductors, thin and precise wafers are essential. The backgrinding process, which involves high-precision processing, is necessary to achieve this. The backgrinding system is used to grind and polish the back side of the wafer to reduce its thickness to ㎛ units. This enables the high integration and miniaturization of semiconductors and a flattening process to allow for detailed circuit design, ultimately leading to the production of IC chips. As the backgrinding system performs precision processing at the ㎛ unit, it is crucial to determine the stability of the equipment's rigidity. Additionally, the flatness and surface roughness of the processed wafer must be checked to confirm the processability of the backgrinding system. IIn this paper, the goal is to verify the processability of the back grinding system by analyzing the natural frequency and resonance frequency of the equipment through computer simulation and measuring and analyzing the flatness and surface roughness of wafers processed with backgrinding system. It was confirmed whether processing damage occurred due to vibration during the backgrinding process.

Seismic Response Control Performance Evaluation of Twisted Irregular Building by TMD Distributed Application (TMD 분산 설치에 따른 Twisted 비정형 건축물의 지진응답 제어 성능 평가)

  • Yoo, Sang-Ho;Park, Kwang-Seob;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.3
    • /
    • pp.61-68
    • /
    • 2024
  • High-rise buildings are equipped with TMD (Tuned Mass Damper), a vibration control device that ensure the stability and usability of the building. In this study, the seismic response control performance was evaluated by selecting the design variables of the TMD based on the installation location of the twisted irregular building. To this end, we selected analysis models of 60, 80, and 100 floors with a twist angle of 1 degree per floor, and performed time history analysis by applying historical seismic loads and resonant harmonic loads. The total mass ratio of TMDs was set to 1.0%, and the distributed installation locations of TMDs were selected through mode analysis. The analysis results showed that the top-floor displacement responses of all analysis models increased, but the maximum story drift ratio decreased. In order to secure the seismic response control performance by distributed installation of TMDs in twisted irregular buildings, it is judged that the mass ratio distribution of TMDs will act as a key variable.

Observation of the Earth's Magnetic field from KOMPSAT-1

  • Hwang, Jong-Sun;Kim, Sung-Yong;Lee, Seon-Ho;Min, Kyung-Duck;Kim, Jeong-Woo;Lee, Su-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1236-1238
    • /
    • 2003
  • The Earth's total magnetic field was extracted from on board TAM (Three Axis Magnetometer) observations of KOMPSAT-1 satellite between June 19th and 21st, 2000. In the pre-processing, the TAM's telemetry data were transformed from ECI (Earth Centered Inertial frame) to ECEF (Earth Centered Earth Fixed frame) and then to spherical coordination, and self-induced magnetic field by satellite bus itself were removed by using an on-orbit magnetometer data correction method. The 2-D wavenumber correlation filtering and quadrant-swapping method were applied to the pre-processed data in order to eliminate dynamic components and track-line noise, respectively. Then, the spherical harmonic coefficients are calculated from KOMPSAT-1 data. To test the validity of the TAM's geomagnetic field, Danish/NASA/French ${\phi}$rsted satellite's magnetic model and IGRF2000 model were used for statistical comparison. The correlation coefficient between ${\phi}$rsted and TAM is 0.97 and IGRF and TAM is 0.96. It was found that the data from on board magnetometer observations for attitude control of Earth-observing satellites can be used to determinate the Earth's total magnetic field and that they can be efficiently used to upgrade the global geomagnetic field coefficients, such as IGRF by providing new information at various altitudes with better temporal and spatial coverage.

  • PDF

Harmonics Assessment for an Electric Railroad Feeding System using Moments Matching Method (모멘트 정합 방법(Moment Matching Method)을 이용한 전기철도 급전시스템의 고조파 평가)

  • Lee, Jun-Kyong;Lee, Seung-Hyuk;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Generally, an electric railroad feeding system has many problems due to the different characteristics in contrast with a load of general three-phase AC electric power system. One of them is harmonics problem caused by the switching device existing in the feeding system, and moreover, the time-varying dynamic loads of rail way is inherently another cause to increase this harmonics problem. In Korea power systems, the electric railroad feeding system is directly supplied from the substation of KEPCO. Therefore, if voltages fluctuation or unbalanced voltages are created by the voltage and current distortion or voltage drop during operation, it affects directly the source of supply. The trainloads of electric railway system have non-periodic but iterative harmonic characteristics as operating condition, because the electric characteristic of the electric railroad feeding system is changed by physical conditions of the each trainload. According to the traditional study, the estimation of harmonics has been performed by deterministic way using the steady state data at the specific time. This method is easy to analyze harmonics, but it has limits in some cases which needs an assessment of dynamic load and reliability. Therefore, this paper proposes the probabilistic estimation method, moments matching method(MW) in order to overcome the drawback of deterministic method. In this paper, distributions for each harmonics are convolved to obtain the moments and cumulants of TDD(Total Demand Distortion), and this can be generalized for any number of trains. For the case study, the electric railway system of LAT(Intra Airport Transit) in Incheon International Airport is modeled using PSCAD/EMTDC dynamic simulator. The raw data of harmonics for the moments matching method is acquired from simulation of the LAT model.

The Development of Integrated Power Quality Diagnosis System for Power System (전력계통 전력품질 통합진단시스템 개발)

  • Kwak, N.H.;Jeon, Y.S.;Park, S.H.;Lee, I.M.;Park, H.C.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.277-279
    • /
    • 2005
  • Recently, due to the increase of power conversion devices and nonlinear loads with the development of information, communication and control technologies, the instantaneous minute interruption factors such as voltage & current harmonics, surge occurring frequency, instantaneous voltage variation, voltage unbalance, flicker etc. have greatly threatened the power quality, and the deterioration of electric power facilities and the functional error of controllers are increasing. As such an instantaneous minute interruption appears to be small and local, accurate evaluation with measurement is difficult and total analysis system is required through a wide range of power quality effect analysis such as the simultaneous measurement on various power supply phenomena and the analysis on the interrelation with system loads. Most of conventional power quality diagnosis equipments have beer developed and applied, which were able to measure the stability rate of frequency, the stability rate of voltage, the electricity-failure duration etc, However, they were insufficient to analyze the system present situation, understand the cause of the failure occurred by the problem of power quality and analyze out the phenomena. Accordingly, this study will address the development of the system for a wide range of power quality diagnosis over the present level, the system for supporting the determination such as the analysis on risk factors, failure mode and impact, the system for harmonic evaluation based on international standards(IEC 61000 Series) and the total power quality diagnosis network & system with the extension and openness as a local and national-scale broadband power quality diagnosis system.

  • PDF

Design of ISM-band Folded Dipole Active Integrated Antenna (ISM 대역용 접힌 다이폴 능동 집적 안테나의 설계)

  • 이재홍;서종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1612-1619
    • /
    • 2001
  • This paper examines the design, implementation characteristics of a folded dipole active integrated antenna. Our goal was to minimize the physical size of RF circuit and its insertion loss, and to make the high frequency tuning easier by directly integrating the ISM(Industrial Scientific & Medical) band power amplifier and antenna. Non-linear model has been used for highly accurate simulation of the power amplifier. The maximum power level was found by using the Load pull method before an impedance matching was achieved. It is found that the total power-added efficiency(PAE) including the driving amplifier was 31.5% and that the transmit power was 13.7 dBm. We also found that the proposed scheme with the smaller antenna as compared with the existing dipole antenna has 23.7 dB total gain including the antenna gain. The suppression of the second harmonic signal to the fundamental signal with respect to the fundamental signal was found to be more than 30 dBc.

  • PDF