• Title/Summary/Keyword: total bacterial counts

Search Result 346, Processing Time 0.035 seconds

Microbiological quality of raw milk in Jeiu (제주도내 목장원유의 미생물학적 분석)

  • 김은주;정경주;김진영;김진회;전창익;이두식;임윤규
    • Korean Journal of Veterinary Service
    • /
    • v.24 no.1
    • /
    • pp.89-94
    • /
    • 2001
  • In order to investigate the relationship between milk hygienic quality and some environmental factors such as the herd size and types of milking machines, we sampled and examined the level of total bacterial count, coliforms, Staphyococcus aureus, somatic cell counts(SCC) and fat rates in raw milk. of the 84 dairy farms, the prevalence of level on number of standard plate count over 100,000cfu/$m\ell$ and coliforms over 1,000cfu/$m\ell$ in bulk milk were 25.0% and 15.6%, respectively. Also, 2 farms(2.4%) were exceed the level on number of 500cfu/$m\ell$ S aureus in raw milk. The prevalence of dairy herd with first grade of total bacterial count(TBC) according to bucket, pipe line and parlour milking system was 40.0%, 74.0% and 84.0%, respectively. The prevalence of dairy herd with first grade of TBC according to grade 1, 2 and 3 by SCC was 77.8%, 83.2%. and 69.2%, respectively. Therefore, the relationships between hygienic quality in raw milk and the herd size, types of milking machines, were significant. In conclusion, this study could be overemphasized the importance of herd management condition for milk hygienic qualify.

  • PDF

Fermentative Characteristics and Anti-Proliferative Activity against Mouse Carcinoma Cell Line of Kimchi prepared with Functional Cabbage (기능성 배추 김치의 발효 특성과 암세포 증식저해능)

  • Yu, Kwang-Won;Lee, Seong-Hyun;Shin, Eun-Hae;Hwang, Jong-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.5
    • /
    • pp.1007-1014
    • /
    • 2017
  • To compare functional Chinese cabbage('Amtak' baechu; F1 hybrid cultivar between Brassica rapa and B. perkinensis, AB) with general Chinese cabbage ('Chunkwang' baechu; general spring cultivar, CB), two kinds of kimchi(ABK and CBK) prepared with AB and CB cultivar were fermented at $10^{\circ}C$ for 10 days. Their fermentative characteristics and anti-proliferative activities against mouse carcinoma cell lines were investigated. General kimchi(CBK) showed mature pH on the $6^{th}$ day of fermentation, whereas functional kimchi(ABK) reached pH on the $9^{th}$ day. CBK also exhibited acidity of mature stage on the $6^{th}$ day, but ABK reached mature acidity on the $9^{th}$ day. Although ABK and CBK were salted in the same condition, ABK had lower salinity than CBK, throughout the fermentation time. The highest total bacterial and lactic bacterial counts of CBK showed on the $8^{th}$ day of fermentation, but ABK showed the highest total bacterial and lactic bacterial counts on the $10^{th}$ day. The texture of ABK was harder than CBK for fermentation time. This seems to be corrleated with the slower fermentation rate of ABK. ABK showed significantly higher anti-proliferative activity (54.6% cell viability of control) in B16BL6 at $1,000{\mu}g/mL$. ABK was also higher in anti-proliferative activity than CBK throughout the fermentation time. However, there was no significant difference in the anti-proliferative activity of ABK between the fermentation times. In conclusion, fermentation of ABK showed a better texture, due to the slow fermentation rate and more anti-proliferative activity against mouse carcinoma cell line than those of CBK.

A Study on Microbial Aspects of Korean Human Milk by Collection Methods (수집방법에 따른 한국인 모유의 미생물 분포에 관한 연구)

  • 이조윤;배형철;남명수
    • Food Science of Animal Resources
    • /
    • v.23 no.3
    • /
    • pp.269-277
    • /
    • 2003
  • This study was carried out to evaluate the safety of Korean human milk. The microorganisms were identified from human milk of 149 healthy mothers by two collection methods, hand and pump expression. The means of total bacterial counts were 2.33x10$^4$ cfu/mL on the samples collected by the pump expression and 7.83xl0$^3$ cfu/mL on those collected by the hand expression. Therefore, the total bacterial counts of pump expression samples was 9.80xl0$^2$∼3.06x10$^4$ cfu/mL more than that of hand expression samples. The coliform counts of pump expression was 9.36xl0$^3$∼8.57xl0$^4$ cfu/mL more than that of hand expression. However, there was any significant differences of the lactic acid bacterial counts between the two samples collected by each methods. 100 strains of 5 patterns of total bacterial counts were isolated based on the morphology of colony in the standard plate count agar. 13 species were identified among the isolated strains. The dominant species in Korean human milk were Staphylococcus which 7 subspecies identified(81% in the rate of total bacteria, 1.07x10$^4$ cfu/mL). Other species identified were Micrococcus, Bacillus, Providencia, Pseudomonas, Yersinia and Acinetobacter. 36 strains of 6 patterns of lactic acid bacterial counts were isolated based on morphology of colony in the BCP agar. 7 species were identified among the isolated strains. The dominant species of lactic acid bacteria in Korean human milk were Lactobacillus brevis(50.9% in the rate of lactic acid bacteria, 4.72xl0$^4$ cfu/mL). Others species identified(49.1% lactic acid bacteria) were Lactobacillus curvatus, Lactobacillus delbrueckii subsp. lactis, Lactobacillus acidophilus, Leuconostic lactis and Streptococcus salivarius subsp. thermophilus.

국내 시판우유의 보관방법별 품질변화에 관한 연구

  • Jeong, Seok-Chan;Kim, Gye-Hui;Jeong, Myeong-Eun;Kim, Seong-Il;Byeon, Seong-Geun;Lee, Deuk-Sin;Park, Seong-Won;Jo, Nam-In;Kim, Ok-Gyeong
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.23-40
    • /
    • 2002
  • This study was conducted to investigate the quality changes of the UHT(ultra-high temperature), LTLT(law temperature long time) and HTST(high temperature short time) treated milk samples by storage conditions for 6 months from August 2000 to February 2001. The UHT treated milk samples collected from 3 plants(A, B and C) were stored at l0$^{\circ}$C and room temperature(dark and light exposure) for 6 months, and the LTLT and HTST treated milk samples(D and E) were also stored for 30 days. The UHT pasteurized milk of A, B and C plant was treated at 130$^{\circ}$C for 2-3s, 133$^{\circ}$C for 2-3s and 135$^{\circ}$C for 4s, respectively. The UHT sterilized milk of A and B plant was treated at 140$^{\circ}$C for 2-3s and 145$^{\circ}$C for 3-4s, respectively. The LTLT milk of D plant was treated at 63$^{\circ}$C for 30 mins, and the HTST milk of E plant was treated at 72$^{\circ}$C for 15s. All of the raw milk samples collected from storage tank in 5 milk plants were showed less than 4.0 X 10$^5$cfu/ml in standard plate count, and normal level in acidity, specific gravity, and component of milk. Preservatives, antibiotics, sulfonamides and available chloride were not detected in both raw and heat treated milk samples obtained from 5 plants. One(10%) of 10 UHT pasteurized milk samples obtained from B plant and 2 (20%) of 10 from C were not detected in bacterial count after storage at 37$^{\circ}$C for 14 days, but all of the 10 milk samples from A were detected. No coliforms were detected in all samples tested. No bacteria were also detected in carton, polyethylene and tetra packs collected from the milk plants. A total of 300 UHT pasteurized milk samples collected from 3 plants were stored at room(3$^{\circ}$C ${\sim}$ 30$^{\circ}$C) for 3 and 6 months, 11.3%(34/300) were kept normal in sensory test, and 10.7%(32/300)were negative in bacterial count. The UHT pasteurized milk from A deteriorated faster than the UHT pasteurized milk from B and C. The bacterial counts in the UHT pasteurized milk samples stored at 10$^{\circ}$C were kept less than standard limit(2 ${\times}$ 10$^4$ cfu/ml) of bacteria for 5 days, and bacterial counts in some milk samples were a slightly increased more than the standard limit as time elapsed for 6 months. When the milk samples were stored at room(3$^{\circ}$C ${\sim}$ 30$^{\circ}$C), the bacterial counts in most of the milk samples from A plant were more than the standard limit after 3 days of storage, but in the 20%${\sim}$30%(4${\sim}$6/20) of the milk samples from B and C were less than the standard limit after 6 months of storage. The bacterial counts in the LTLT and HTST pasteurized milk samples were about 4.0 ${\times}$ 10$^3$ and 1.5 ${\times}$ 101CFU/ml at the production day, respectively. The bacterial counts in the samples were rapidly increased to more than 10$^7$ CFU/ml at room temperature(12$^{\circ}$C ${\sim}$ 30$^{\circ}$C) for 3 days, but were kept less than 2 ${\times}$ 10$^3$ CFU/ml at refrigerator(l0$^{\circ}$C) for 7 days of storage. The sensory quality and acidity of pasteurized milk were gradually changed in proportion to bacterial counts during storage at room temperature and 10$^{\circ}$C for 30 days or 6 months. The standard limit of bacteria in whole market milk was more sensitive than those of sensory and chemical test as standards to determine the unaccepted milk. No significant correlation was found in keeping quality of the milk samples between dark and light exposure at room for 30 days or 6 months. The compositions of fat, solids not fat, protein and lactose in milk samples were not significantly changed according to the storage conditions and time for 30 days or 6 months. The UHT sterilized milk samples(A plant ; 20 samples, B plant ; 110 samples) collected from 2 plants were not changed sensory, chemical and microbiological quality by storage conditions for 6 months, but only one sample from B was detected the bacteria after 60 days of storage. The shelflife of UHT pasteurized milk in this study was a little longer than that reported by previous surveys. Although the shelflife of UHT pasteurized milk made a significant difference among three milk plants, the results indicated that some UHT pasteurized milk in polyethylene coated carton pack could be stored at room temperature for 6 months. The LTLT and HTST pasteurized milk should be sanitarily handled, kept and transported under refrigerated condition(below 7$^{\circ}$C) in order to supply wholesome milk to consumers.

  • PDF

Salivary Bacterial Counts on Application Time of Oral Antiseptic Agents and Mechanical Irrigation (구강소독제의 적용 시간 및 기계적 세척 여부에 따른 타액 내 세균 수의 감소 효과)

  • Lim, Hyoung-Sup;Kim, Jae-Jin;Kim, Mija;Kim, Hak Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • Purpose: The purpose of this study is to establish the acceptable intraoral application time of antiseptic agents and evaluate the effect of mechanical irrigation. Methods: A total of 80 subjects were selected for this study. Saliva secreted at the resting state was taken. The subjects were divided into 8 experimental groups, and kept 10% povidone-iodine (PVI) or 0.2% chlorhexidine gluconate (CHX) for 20 or 40 seconds in their oral cavity with/without irrigation of the oral cavity with sterilized normal saline, respectively. Then, the saliva was taken and diluted with phosphate buffered saline and then plated onto 5% sheep blood agar plates, which were incubated. Colony forming unit (CFU) was measured for the salivary bacterial counts. Results: After application of PVI and CHX, all the experimental groups showed statistically significant decrease in CFU (P<0.01). Group 2 (PVI, 40 s) showed more significant reduction rate in CFU than group 4 (CHX, 40 s; P<0.01). Group 6 (PVI, 40 s, irrigated) showed more significant reduction rate than group 2 (PVI, 40 s; P<0.01). Group 2 (PVI, 40 s) showed more significant reduction rate than group 1 (PVI, 20 s; P<0.01). Conclusion: Application of PVI for 40 seconds and mechanical irrigation with sterilized normal saline showed the best result among the 8 groups in terms of the reduction rate of salivary bacterial counts.

Changes of Nitrifying Bacteria in the Different Zone (Upper·Mid·Lower Part) of the Nak-Dong River (낙동강 상·중·하 수역에서의 질화세균군의 변화)

  • Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.214-220
    • /
    • 2008
  • Nitrifying bacteria were detected by fluorescent in situ hybridization (FISH) method at 6 sampling sites with different eutrophication degree in the Nak-Dong River and their tributaries. And conventional physico-chemical parameters including $NH_4-N$, $NO_3-N$, and TN were determined concurrently. In rainy period (July), there was no noticeable difference between the number of ammonia/nitrite-oxidizing bacteria detected at each site except Sang-Ju and the ratio of nitrifying bacteria to total counts stained by DAPI varied in 6~33%. By contrast, in the dry period (October), both of bacterial population was increased differently and the ratio of nitrifying bacteria to total counts ranged more widely from 6% in heavily polluted water zone, Hwa-Won to 60% in upper tributary with high agricultural land use. Byung-Sung-Chun. In January, the numbers of ammonia-oxidizing bacteria was reduced up to one tenth, while those of nitrite-oxidizing bacteria was apparently increased maybe due to high DO and low DOC.

Shelf-life and Quality Characteristics of Potassium Sorbate-free Meat Products (솔빈산 칼륨이 첨가되지 않은 육제품의 저장 수명과 품질 특성)

  • 이근택;황보식;정구용
    • Food Science of Animal Resources
    • /
    • v.18 no.2
    • /
    • pp.107-114
    • /
    • 1998
  • This study aimed for the examination of quality characteristics and safety of potassium sorbate-free meat products. Therefore, experiments were carried out on the frankfurter sausage and pressed ham, which were stored at 4 and 30$^{\circ}C$ for up to 40 days. The potassium sorbate concentrations of the frankfurter sausage and pressed ham obtained from local market ranged from 1.087 to 1.449g / kg, which were below the permitted value as prescribed in the Korean Hygienic Regulation. At the 0 day the total aerobic bacterial counts of frankfurter sausage and pressed ham were in the level of around 103.0 and 103.4 CFU / g, respectively. However, they were prominently increased after 20 days at 4$^{\circ}C$ and 10 days at 30$^{\circ}C$ to higher than 105 CFU / g. After 30 days the counts were increased to 106.5 and 107.2 CFU / g, respectively. The growth curve of lactic acid bacteria was shown to be similar with that of total bacteria. the counts of lactic acid bacteria of the products stored at 4$^{\circ}C$ were 101∼102 CFU / g lower than those stored at 30$^{\circ}C$. Coliform bacteria was not detected in both of the products stored at 4$^{\circ}C$ even after 40 days storage, but after 10 days at the 30$^{\circ}C$. No significant differences in the microbial counts examined in this study were observed between frankfurter sausage and pressed ham. The biochemical tests on the isolated colonies from Clostridein agar showed no presence of Clostridium botulinum and Clostridium perfringens in the meat products examined. The pH of frankfurter sausage and pressed ham at the beginning was about 6.6, which level was maintained relatively constant during the storage at 4$^{\circ}C$, but it was increased after decrease to about 5.5 during the storage at 30$^{\circ}C$. TBA value was increased slightly till 30 days, but after that time increased sharply. VBN value was increased slowly during the whole storage, but it was more than 30 mg% for the samples stored at 30$^{\circ}C$.

  • PDF

Effect of Storage Temperature on the Microbiological and pH Changes of Mackerel, Croaker, and Saury During Storage (저장온도가 고등어, 조기, 꽁치의 저장중 미생물 및 pH의 변화에 미치는 영향)

  • Sungbae Byun;Lee, Sehee;Lee, Seunghee;Lee, Yongwoo;Namkyu Sun;Song, Kyung-Bin
    • Food Science and Preservation
    • /
    • v.10 no.2
    • /
    • pp.154-157
    • /
    • 2003
  • To examine the quality changes of three typical fishes under usual storage conditions during marketing, we determined the total bacterial counts and pH values during storage of mackerel, croaker, and saury. Mackerels were stored at 0$^{\circ}C$ and on ice at 19$^{\circ}C$, which is the usual storage condition in a local market and croakers and saury were stored at 0$^{\circ}C$ and 4$^{\circ}C$. Total bacterial counts of mackerel, croaker, and saury were 3,2${\times}$10$^3$, 2.9${\times}$10$^3$, and 2.8 x 10$^4$CFU/g at the time of storage respectively. Total bacterial counts of mackerel stored on ice at 19$^{\circ}C$ increased during storage and reached to 8.4 x 10$\^$6/ CFU/g at day 6, while those stored at 0$^{\circ}C$ decreased up to 2 days of storage and increased to 5.6 ${\times}$ 10$^4$CFU/g. For croaker and saury, total bacterial counts at 0$^{\circ}C$ were 2.5 ${\times}$ 10$\^$5/ and 2.1 x 10$\^$5/ CFU/g at day 6, respectively, while those stored at 4$^{\circ}C$ had 3.6 x 10$\^$6/ and 2.6 ${\times}$ 10$\^$5/ CFU/g. the pH value or mackerel was 5.56 at the time or storage, yet it increased to 6.04. The pH changes of croaker and saury had a similar pattern with that of mackerel, which increased with time of storage. These results suggest that storage of fishes at 0$^{\circ}C$ should be better than those at 4$^{\circ}C$ or on ice at 19$^{\circ}C$ in terms of microbial safety as well as quality and shelf-life of fishes.

Antimicrobial Effects of Retort and Gamma Irradiation on Bacterial Populations in Spicy Chicken Sauce (레토르트 및 감마선 조사에 의한 화닭 덮밥 소스의 미생물 제어 효과 비교)

  • Kim, Young-Sik;Kim, Hyun-Joo;Yoon, Yo-Han;Shin, Myung-Gon;Kim, Cheon-Jei;Shin, Mee-Hye;Lee, Ju-Woon
    • Food Science of Animal Resources
    • /
    • v.30 no.1
    • /
    • pp.141-147
    • /
    • 2010
  • This study evaluated the antimicrobial effects of retort process and gamma irradiation on reduction of total bacterial populations in spicy chicken sauce, which is served on top of the steamed rice. Commercial spicy chicken sauce was treated with retort and gamma ray at 0, 1, 3, 5, and 10 kGy. Total aerobic bacterial populations were then enumerated on plate count agar and isolated bacteria from the test samples were identified using PCR analysis. Moreover, gamma ray sensitivity of identified bacteria was evaluated by $D_{10}$ values, and genotoxicity of gamma-irradiated samples was examined. Gamma irradiation at 3 kGy reduced total aerobic bacterial cell counts in spicy chicken sauce below detection limit, but total aerobic bacterial cell counts in test samples treated with retort were 2.1 log CFU/g. Identified bacteria from the samples were Bacillus subtilis, B. amyloiquefaciense, and B. pumils, and the $D_{10}$ values for B. subtilis and B. cereus were 0.39 ($R^2\;=\;0.921$) and 0.28 log CFU/g ($R^2\;=\;0.904$), respectively. The SOS chromotest showed that the gamma-irradiated spicy chicken sauce did not cause mutagenicity. These results indicate that gamma irradiation of spicy chicken sauce could be useful in ensuring microbial safety.

Effects of Sediment Harvesting on Bacterial Community Structure (골재채취가 세균군집구조에 미치는 영향)

  • Park, Ji-Eun;Lee, Young-Ok
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.172-178
    • /
    • 2006
  • The dynamics of bacterial populations belonging to $\alpha\;\beta\;\gamma-subclass$ proteobacteria, Cytophaga-Flavobacterium (CF) group and sulfate reducing bacteria (SRB) in water column of the middle reaches of Nakdong River depending on sediment harvesting were analyzed by fluorescent in situ hybridization (FISH) at sediment harvesting site (near the Seongju bridge) and non-sediment harvesting site (near the Gumi bridge). In addition, some physico-chemical parameters such as temperature, pH, $chi-\alpha$ and electrical conductivity were measured. Regarding the number of total cell counts, cells stained by DAPI, there were no substantial quantitative differences between both sites, but those fluctuation at sediment Harvesting site was greater. And also the ratios of CFgroup and SRB to total cell counts tend to increase at sediment harvesting site with higher $chl-\alpha$, maybe due to the resuspension of sediment into water column. But the total proportion of all determined bacterial populations to total cell counts were greater at non-sediment harvesting site, compared with those at sediment harvesting site. Since the detectibility of bacteria by FISH depends on their metabolic activity, those lower proportion at the sediment harvesting site implies that sediment harvesting may lead to malfunction of those bacteria respect to nutrient recycling and subsequently negative effects on microbial food web.