• Title/Summary/Keyword: torsional vibration analysis

Search Result 302, Processing Time 0.029 seconds

Evaluation of Diesel Engine Structural Vibration Using Phase Vector Sum (Phase vector sum을 이용한 디젤엔진 구조진동의 평가)

  • 이수목;김관영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.383-388
    • /
    • 2003
  • As an effective way of response evaluation in structural vibration analysis, the phase vector sum(PVS) method used in shaft torsional vibration analysis is introduced. Basic relation of PVS applicable to structural problem is derived and applied to Diesel engine structures. Concepts of forced phase vector sum (FPVS) and significance level (SL) are proposed to visualize the correlation between excitation orders and vibration modes in the SL map. The maximum responses and SL are compared and reviewed to confirm the validity of the method. It is regarded FPVS is adequate to newly evaluate the structural vibration based on excitation information.

  • PDF

Effect of rigid connection to an asymmetric building on the random seismic response

  • Taleshian, Hamed Ahmadi;Roshan, Alireza Mirzagoltabar;Amiri, Javad Vaseghi
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.183-200
    • /
    • 2020
  • Connection of adjacent buildings with stiff links is an efficient approach for seismic pounding mitigation. However, use of highly rigid links might alter the torsional response in asymmetric plans and although this was mentioned in the literature, no quantitative study has been done before to investigate the condition numerically. In this paper, the effect of rigid coupling on the elastic lateral-torsional response of two adjacent one-story column-type buildings has been studied by comparison to uncoupled structures. Three cases are considered, including two similar asymmetric structures, two adjacent asymmetric structures with different dynamic properties and a symmetric system adjacent to an adjacent asymmetric one. After an acceptable validation against the actual earthquake, the traditional random vibration method has been utilized for dynamic analysis under Ideal white noise input. Results demonstrate that rigid coupling may increase or decrease the rotational response, depending on eccentricities, torsional-to-lateral stiffness ratios and relative uncoupled lateral stiffness of adjacent buildings. Results are also discussed for the case of using identical cross section for all columns supporting eachplan. In contrast to symmetric systems, base shear increase in the stiffer building may be avoided when the buildings lateral stiffness ratio is less than 2. However, the eccentricity increases the rotation of the plans for high rotational stiffness of the buildings.

Correlation between torsional vibration and translational vibration

  • Jeng, V.;Tsai, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.671-694
    • /
    • 2002
  • This paper presents theoretical investigation on the cross correlation between torsional vibration ($u_{\theta}$) and translation vibration ($u_x$) of asymmetrical structure under white noise excitation. The formula reveals that the cross correlation coefficient (${\rho}$) is a function of uncoupled frequency ratio (${\Omega}={\omega}_{\theta}/{\omega}_x$), eccentricity, and damping ratio (${\xi}$). Simulations involving acceleration records from fifteen different earthquakes show correlation coefficients results similar to the theoretical correlation coefficients. The uncoupled frequency ratio is the dominating parameter to ${\rho}$; generally, ${\rho}$ is positive for ${\omega}_{\theta}/{\omega}_x$ > 1.0, negative for ${\omega}_{\theta}/{\omega}_x$ < 1.0, and close to zero for ${\omega}_{\theta}/{\omega}_x$ = 1.0. When the eccentricity or damping ratio increases, ${\rho}$ increases moderately for small ${\Omega}$ (< 1.0) only. The relation among $u_x$, $u_{\theta}$ and corner displacement are best presented by ${\rho}$; a simple way to hand-calculate the theoretical dynamic corner displacements from $u_x$, $u_{\theta}$ and ${\rho}$ is proposed as an alternative to dynamic analysis.

Identification of the Shear Velocities of Near Surface Soils Using Torsional Guided Waves (비틀림 유도파를 이용한 근지표면 전단속도 규명)

  • Park, Kyung-Jo;Oh, Hyung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.771-776
    • /
    • 2012
  • A technique is presented that uses a circular waveguide for the measurement of the bulk shear(S-wave) velocities of unconsolidated, saturated media, with particular application to near surface soils. The technique requires the measurement of the attenuation characteristics of the fumdamental T(0,1) mode that propagates along an embedded pipe, from which the acoustic properties of the surrounding medium are inferred. From the dispersion curve analysis, the feasibility of using T(0,1) mode which is non-dispersive and have constant attenuation over all frequency range is discussed. The principles behind the technique are discussed and the results of an experimental laboratory validation are presented. The experimental data are best fitted for the different depths of wetted sand and the shear velocities as a function of depths are formulated using power law curves.

Nonlinear Torsional Oscillations of a System Incorporating a Hooke's Joint : Combination Resonances (훅조인트로 연결된 축계의 비선형 비틀림 진동 : 조합공진의 경우)

  • Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.706-711
    • /
    • 2005
  • Torsional oscillations of a system incorporating a Hooke's joint are investigated by studying a simple similar nonlinear 2-degree-of-freedom model, which has linear and quadratic nonlinear parametric excitations. The simple system is identified to have the possibilities of primary, sub harmonic and combination resonances. The case of simultaneous primary and combination resonances is selected for perturbation analysis to have the reduced amplitude-equations of motion. The same procedure is applied to the system incorporating a Hooke's joint.

Study on the Improvement of Output Fluctuation from Generator Driven by Large Size-Low Speed Diesel Engine (대형저속 디젤엔진 구동 발전기의 출력변동 개선에 관한 연구)

  • 김영주;전효중;이돈출;이충기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.6-16
    • /
    • 1992
  • Since world-wide oil shock on 1970s, many large size-low speed diesel engines, instead of steam turbines, are used for the industrial electric power generating plants due to their economic advantage of low specific fuel consumption. But it is very important to control their electric power fluctuation problems for the purpose of smooth parallel operation with existing power plants. In this paper the fluctuation problem of KEPCO Nam-cheju No.1 generator driven by diesel ngine(B & W 7K 60MC, 13931x138.5RPM) is investigated with analysis of torsional vibration of which 4th harmonic component is related to its power fluctuation. The problem can be improved by modification of cylinder arrangement and flywheel position in reverse sequence, equalizing the combustion gas pressure of all cylinder and installation of torsional vibration damper enlarged 30%(Je=7287Kg.m$^{2}$) and high quality balancing of generator rotor.

  • PDF

Effects of a One-Way Clutch on the Nonlinear Dynamic Behavior of Spur Gear Pairs under Periodic Excitation

  • Cheon Gill-Jeong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.941-949
    • /
    • 2006
  • Nonlinear behavior analysis was used to verify whether a one-way clutch is effective for reducing the torsional vibration of a paired spur gear system under periodic excitation. The dynamic responses were studied over a wide frequency range by speed sweeping to check the nonlinear behavior using numerical integration. The gear system with a one-way clutch showed typical nonlinear behavior. The oscillating component of the dynamic transmission error was reduced over the entire frequency range compared to a system without a one-way clutch. The one-way clutch also eliminated unsteady continuous jump phenomena over multiple solution bands, and prevented double-side contact, even with very small backlash. Installing a one-way clutch on both sides of the gear system was more effective at mitigating the negative effects of external periodic excitation and various parameter changes than a conventional gear system without a one-way clutch.

Non-Linear Torsional Oscillations of a System Incorporating a Hooke's Joint (훅스 조인트로 연결된 축계의 비선형 비틀림 진동)

  • Chang, Seo-Il;Lee, Jang-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.110-115
    • /
    • 1995
  • In this paper, the problem of non-linear torsional oscillation of a system incorporating a Hooke's joint is studied. Classical perturbation methods including higher order averaging and bifurcation theory are adopted for analysis. The equation of motion derived by Porter[1] is presented and the type of the system is identified. It has been found that two important cases deserve extensive study. Method of higher order averaging which is a main research tool in this study is introduced briefly. The averaged equations are studied analyticallyand numerically and the method of averaging has been found to be effective to study complex non-linear system.

  • PDF

A Coupled Unbalance Response Analysis of Geared Two-Shaft Rotor-Bearing System (2축 로터-베어링 시스템의 연성 불균형 응답해석)

  • 이안성;하진웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.220-226
    • /
    • 2002
  • A general solution method is presented to obtain the unbalance response orbit from the finite element based equations of motion of a gear-coupled two-shaft rotor-bearing system. Particularly, are proposed the analytical solutions of major and minor axis radii of the orbit. The method has been applied to analyze the unbalance response of a 800 refrigeration-ton turbo-chiller rotor-bearing system, having a bull-pinion speed increasing gear. The bumps of unbalance responses have been observed at the first torsional natural frequency due to the coupling of lateral and torsional dynamics by the gear meshing. Further, the proposed analytical solutions have been validated with results obtained by a full numerical approach.

  • PDF

A Study on the Thoretical Analysis of the Torque Harmonics for Diesel Engines (디젤기관의 토크 하모닉스에 대한 이론적 해석)

  • 이용진;장민오;김의간;전효중
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.465-473
    • /
    • 2000
  • In this crankshaft of marine diesel engines the exciting torques are produced by gas pressure and reciprocating masses. These torques are periodically changing and are extremely out of balance. To calculate the torsional vibrations of propulsion shafting caused by unbalanced torque the torque harmonics are utilized. Until now to calculate the torsional vibrations of propulsion shafting. the torque harmonics have been supplied by the engine maker. When the torque harmonics of an engine are not available the torque harmonics of a similar engine type had to be used. However such data is not suitable for the reliable calculations of torsional vibrations. In this paper the combustion characteristics of marine diesel engines including $\rho{-}\upsilon$ diagram are investigated and the torque harmonics based on these are theoretically calculated. reliability of the calculations is confirmed by comparing them with those of an engine maker. This study should prove useful for the calculations of torsional vibrations for diesel engine propulsion shafting. particularly for 4-stroke engines whose torque harmonics are difficult to obtain directly from the engine and not ordinarily supplied by the engine maker.

  • PDF