• 제목/요약/키워드: torsional tests

검색결과 190건 처리시간 0.03초

컴플라이언트 메커니즘을 이용한 플러터 실험 장치 설계 (Flutter Experiment Equipment Design with Compliant Mechanism)

  • 이주호;이준성;성열훈;한재흥
    • 한국소음진동공학회논문집
    • /
    • 제22권4호
    • /
    • pp.393-400
    • /
    • 2012
  • This paper deals with a development of 2-DOF flutter experiment equipment which represents a 2-DOF typical section model. For a conventional 2-DOF flutter experiment equipment, it is hard to observe flutter boundary clearly due to the complexity of the experiment equipment. To refine our flutter experiment equipment system, a compliant mechanism based torsional spring is used. Well-designed extruded aluminum pipe works as a torsional spring. SolidWorks and ANSYS are used for modeling, analysis and design of the torsional spring. With this designed torsional spring, the 2-DOF flutter experiment equipment is developed and wind tunnel tests are performed. Clear flutter boundary which is estimated by classical flutter analysis is observed in the experiments.

고층건축물의 비틀림방향 변동풍력의 특성에 관한 실험적 연구 (Wind tunnel test study on verifying the characteristics of torsional fluctuating wind force of rectangular tall buildings)

  • 하영철;김동우;길용식
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.101-104
    • /
    • 2006
  • This study aims at verifying characteristics of torsional fluctuating moment coefficient and power spectral density, which is needed to estimate torsional response of tall buildings. In order to estimate characteristics, the wind tunnel tests have been conducted on 52 types aero-elastic model of the rectangular prisms with various aspects ratios, side ratios and surface roughness in turbulent boundary layer flows. In this paper, characteristics of torsional fluctuating wind force are briefly discussed and then these results were mainly analyzed as a function of the aspects ratios and side ratios of buildings.

  • PDF

축예하중을 가한 알루미늄/복합재료 동시경화 샤프트의 비틀림 피로 특성 (Torsional Fatigue Characteristics of Aluminum/Composite Co-Cured Shafts with Axial Compressive Preload)

  • Kim, Jong-Woon;Hwang, Hui-Yun;Lee, Dai-Gil
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.183-186
    • /
    • 2003
  • Long shafts for power transmission should transmit torsional load with vibrational stability. Hybrid shafts made of unidirectional fiber-reinforced composite and metal have high fundamental bending natural frequency as well as high torque transmission capability. However, thermal residual stresses due to the coefficient difference of thermal expansion of the composite and metal are developed so that the high residual stresses decrease fatigue resistance of the hybrid shafts, especially at low operating temperatures. In this work, axial compressive preload was given to the shaft in order to change the residual stresses. Static and fatigue torsional tests were performed and correlated with stress analyses with respect to the preload and service temperature.

  • PDF

컴플라이언트 메커니즘을 이용한 플러터 실험 장치 설계 (Flutter Experiment Equipment Design with Compliant Mechanism)

  • 이주호;이준성;성열훈;한재흥
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.429-434
    • /
    • 2012
  • This paper deals with a development of 2-DOF flutter experiment equipment which represents a 2-DOF typical section model. For a conventional 2-DOF flutter experiment equipment, it is hard to observe flutter boundary clearly due to the complexity of the experiment equipment. To refine our flutter experiment equipment system, a compliant mechanism based torsional spring is used. Well-designed extruded aluminum pipe works as a torsional spring. SolidWorks and ANSYS are used for modeling, analysis and design of the torsional spring. With this designed torsional spring, the 2-DOF flutter experiment equipment is developed and wind tunnel tests are performed. Clear flutter boundary which is estimated by classical flutter analysis is observed in the experiments.

  • PDF

Shaking table test and horizontal torsional vibration response analysis of column-supported vertical silo group silo structure

  • Li, Xuesen;Ding, Yonggang;Xu, Qikeng
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.377-389
    • /
    • 2021
  • Reinforced concrete vertical silos are universal structures that store large amounts of granular materials. Due to the asymmetric structure, heavy load, uneven storage material distribution, and the difference between the storage volume and the storage material bulk density, the corresponding earthquake is very complicated. Some scholars have proposed the calculation method of horizontal forces on reinforced concrete vertical silos under the action of earthquakes. Without considering the effect of torsional effect, this article aims to reveal the expansion factor of the silo group considering the torsional effect through experiments. Through two-way seismic simulation shaking table tests on reinforced concrete column-supported group silo structures, the basic dynamic characteristics of the structure under earthquake are obtained. Taking into account the torsional response, the structure has three types of storage: empty, half and full. A comprehensive analysis of the internal force conditions under the material conditions shows that: the different positions of the group bin model are different, the side bin displacement produces a displacement difference, and a torsional effect occurs; as the mass of the material increases, the structure's natural vibration frequency decreases and the damping ratio Increase; it shows that the storage material plays a role in reducing energy consumption of the model structure, and the contribution value is related to the stiffness difference in different directions of the model itself, providing data reference for other researchers; analyzing and calculating the model stiffness and calculating the internal force of the earthquake. As the horizontal side shift increases in the later period, the torsional effect of the group silo increases, and the shear force at the bottom of the column increases. It is recommended to consider the effect of the torsional effect, and the increase factor of the torsional effect is about 1.15. It can provide a reference for the structural safety design of column-supported silos.

순수비틀림을 받는 철근콘크리트 보의 비틀림 강도와 파괴모드 (Torsional Strength and Failure Modes of Reinforced Concrete Beams Subjected to Pure Torsion)

  • 이정윤;김상우;김지현
    • 콘크리트학회논문집
    • /
    • 제20권4호
    • /
    • pp.503-511
    • /
    • 2008
  • 이 논문에서는 순수비틀림을 받는 철근콘크리트 보의 비틀림 성능에 관한 해석적 실험적 연구 결과를 나타내었다. 주요 실험변수는 비틀림 보강근의 양과 비틀림 각도 즉, 종방향 비틀림 보강근에 대한 횡방향 비틀림 보강근의 비이다. 실험에 의하면 ACI 318-05 기준식은 최대 비틀림 보강근의 양을 약 2배 과소평가하였다. 비틀림 보강근이 항복한 후에 파괴하는 102개 철근콘크리트 보의 실험 결과와 비교한 결과, ACI 318-05 기준식은 파괴모드가 변화하는 구간에서 비틀림 파괴모드를 정확하게 예측하지 못하였다. 또한, ACI 318-05 비틀림 기준식은 비틀림 보강근량이 상대적으로 많이 보강된 철근콘크리트 보의 경우 비틀림 강도를 과대평가하는 반면, 비틀림 보강근량이 작은 경우에는 실제 비틀림모멘트를 과소평가하였다. 실험 결과와 ACI 318-05 기준식 사이의 이러한 불일치는 기준식에서 비틀림 보강근의 인장증강효과와 콘크리트의 비틀림 강도에 대한 기여를 무시하고 있기 때문으로 판단된다.

API X70 및 X80급 라인파이프강의 준정적 및 동적 비틀림 변형 거동 (Quasi-Static and Dynamic Torsional Deformation Behavior of API X70 and X80 Linepipe Steels)

  • 김용진;김양곤;신상용;이성학
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.8-18
    • /
    • 2010
  • This study aimed at investigating quasi-static and dynamic torsional deformation behavior of three API X70 and X80 linepipe steels. Quasi-static and dynamic torsional tests were conducted on these steels. having different grain sizes and volume fractions of acicular ferrite and polygonal ferrite, using a torsional Kolsky bar. The test data were then compared via microstructures and adiabatic shear band formation,. The dynamic torsional test results indicated that the steels rolled in the single phase region had higher maximum shear stress than the steel rolled in the two phase region, because the microstructures of the steel rolled in the single phase region were composed mainly of acicular ferrites. In the X80 steel rolled in the single phase region, the increased dynamic torsional properties could be explained by a decrease in the overall effective grain size due to the presence of acicular ferrite having smaller effective grain size. The possibility of adiabatic shear band formation was analyzed from the energy required for void initiation and variation in effective grain size.

실물모형 시험를 이용한 U형 강박스거더의 상부 수평브레이싱에 관한 실험적 연구: 비틂강성 (Experimental Study on the Top- Lateral Bracing of U-Type Steel Box Girders Using Real Size Specimen: Torsional Stiffness)

  • 심낙훈;박영석
    • 한국강구조학회 논문집
    • /
    • 제18권4호
    • /
    • pp.447-456
    • /
    • 2006
  • 본 논문에서는 실내실험을 통하여 U형 강박스거더의 상부 수평브레이싱이 비틂거동에 미치는 영향을 파악하고 기존의 제안식에 대한 적정성을 검토하기 위하여, 실제 시공되고 있는 U형 강박스거더 단면 크기의 2/3 정도 되는 캔틸레버보 형식의 시험체를 제작하여 상부 수평브레이싱의 형태 및 패널 간격에 따른 비틂강성의 효과를 파악하였다. 그 결과, 상부 수평브레이싱을 설치함으로써 거더의 비틂강성이 상당히 증가함을 알 수 있었으며, 브레이싱의 패널 구성을 가장 경제적으로 설계하기 위해서는 폭과 길이의 비가 약 1:1.5 즉, 대각선브레이싱과 상부 플랜지의 경사 예각이 약 $40^{\circ}$로 설치하는 것이 바람직할 것으로 판단되었다.

CFRP 소재의 선박용 축계 적용을 위한 비틀림강도 특성 (Torsional Strength of CFRP Material for Application of Ship Shaft System)

  • 김민규;신익기;김선진;박대겸;서정관
    • 대한조선학회논문집
    • /
    • 제58권6호
    • /
    • pp.431-439
    • /
    • 2021
  • The Carbon Fiber Reinforced Plastic (CFRP) material is recently widely used in the composite industry with excellent rigidity and lightweight properties. A ship shaft system requires high standards of safety on torsional strength capacity. The purpose of this study is to verify the applicability of a CFRP shaft system to take the place of metal shaft systems for ships from a viewpoint of torsional strength. Selection of materials and manufacturing method are executed then two geometrically scaled CFRP shaft system models were designed and manufactured with three-layer patterns. The models were used for a series of torsion tests under single and repeated torsional loading conditions. Detailed design and manufacturing methods for a CFRP ship shaft system are documented and the torsion test results are listed in this paper. The results of this study could be useful guidelines on the development of CFRP ship shaft systems and a test method.