• Title/Summary/Keyword: torsional stress

Search Result 251, Processing Time 0.027 seconds

Dynamic Shear Modulus of Crushable Sand (잘 부서지는 모래의 동적전단탄성계수)

  • 윤여원
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.67-80
    • /
    • 1992
  • In the analysis of dynamic problem, determination of mazimun shear modulus is essential for the estimation of shear stress at any strain level. Although many models for silica sands were presented, the direct accomodation of those models to crushable sand would be difficult because of crushability during torsion. In this research dynamic behaviour of tested sand is presented. The shear modulus of loose crushable sand shows similar results to silica sand. However, as the density of crushable sand increases the shear modulus decreases because of crushability by increasing surface contact area. And modulus number is expressed in terms of state parameter by Been and Jefferies (1965).

  • PDF

Structural Safety Evaluation of An Autoclave Cured Train Carbody with Length of 23m (오토클레이브 성형된 길이 23m 복합재 철도차량 차체의 구조적 특성평가)

  • Kim, Jung-Seok;Lee, Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1551-1559
    • /
    • 2005
  • This paper explains manufacturing process and experimental studies on a composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a 40mm-thick aluminium honeycomb core and 5mm-thick woven fabric carbon/epoxy face. In order to evaluate structural behavior and safety of the composite carbody, the static load tests such as vertical load, end compressive load, torsional load and 3-point support load tests have been conducted. These tests were performed under Japanese Industrial Standard (JIS) 17105 standard. From the tests, maximum deflection was 12.3mm and equivalent bending stiffness of the carbody was 0.81$\times$10$^{14}$ kgf$\cdot$mm$^{2}$ Maximum stress of the composite body was lower than 12.2$\%$ of strength of the carbon/epoxy. Therefore, the composite body satisfied the Japanese Industrial Standard.

An Estimation of Springing Responses for Recent Ships

  • Park In-Kyu;Lee Soo-Mok;Jung Jong-Jin;Yoon Myung-Cheol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.173-178
    • /
    • 2004
  • The estimation of springing responses for recent ships are carried out and application to a ship design are described. To this aim, springing effects on hull girder were re-evaluated including non-linear wave excitations and torsional vibrations of the hull. The Timoshenko beam model was used to calculate stress distribution on the hull girder by the superposition method. The strip method was employed to calculate the hydrodynamic forces and moments on the hull. In order to remove the irregular frequencies, we adopted 'rigid lid' on the hull free surface level and added asymptotic interpolation along the high frequency range. Several applications to the existing ships were carried out. They are Bishop and Price's container ship, S-175 container ship, large container, VLCC and ore carrier. One of them is compared with ship measurement result while another with that of model test. Comparison between analytical solution and numerical one for homogeneous beam type artificial ship shows good agreement. It is found that most springing energy came from high frequency waves for the ships having low natural frequency and North Atlantic route etc. Therefore, the high frequency tail of the wave spectrum should be increased by $\omega^{-3}\;instead\;of\;\omega^{-4}\;or\;\omega^{-5}$ for springing calculation.

  • PDF

Development of Engine Vibration Analysis and Monitoring System(EVAMOS) for Marine Vessels (선박용 엔진 진동 분석 및 모니터링 시스템(EVAMOS) 개발에 관하여)

  • Lee, D.C.;Joo, K.S.;Nam, T.K.;Kim, E.S.;Kim, S.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.155-161
    • /
    • 2009
  • Engine builders have separately developed and applied torsional, axial and structural vibration monitoring system on most marine engines. These systems displayed their results for engine or ship operation engineers and were not regularly stored at the hardware of computer. So, the history and trend of various engine and hull vibrations were not supported for preventive maintenance and to protect the failure of these activity or function. The integrated vibration or stress monitoring system(EVAMOS : engine vibration analysis and monitoring system) in marine diesel engine, its accessories and hull structure have been developed by the dynamics laboratory of Mokpo Maritime University during last 3 years. This paper introduces the design conception and ability of commercial software EVAMOS with field data on several actual tests.

Evaluation of Structural Safety of Electro-Mechanical Linear Actuator and Load Simulator with Plate Spring

  • Kim, Dong-Hyeop;Kim, Young-Cheol;Kim, Sang-Woo;Lee, Jong Whan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.18-25
    • /
    • 2020
  • This study investigated the structural behaviors and safety of an electro-mechanical linear actuator and a load simulator with a plate spring. The material and dimensions of the plate spring were determined by theoretically calculating the stress and torsional angle for the rating load of the actuator. Thereafter, a flexible multibody dynamics (FMBD) analysis was conducted on the linear actuator and load simulator to confirm the performance of the load simulator and acquire the reaction forces acting on the actuator and simulator. The structural safety of the linear actuator and load simulator was evaluated via finite element analysis using the aforementioned reaction forces. Consequently, the proposed linear actuator and load simulator were determined to be structurally safe; however, the safety factors for the actuation rod and the housing on the actuator were excessively high. Therefore, the weight and cost must be reduced to improve their design parameters in the future.

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

Structural performance evaluation of bolted end-plate connections in a half-through railway inclined girder

  • Jung Hyun Kim;Chang Su Shim
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.473-486
    • /
    • 2023
  • A through-railway bridge with an inclined girder has recently been applied to optimize the cross-section of a slender bridge structure in railway bridges. To achieve the additional cross-section optimization effect by the bolted end-plate connection, it is necessary to investigate the application of the bolted end-plate tension connection between the inclined girder and the crossbeam. This basic study was conducted on the application of the bolted end-plate moment connection of crossbeams to half-through girders with inclined webs. The combined behavior of vertical deflection and rotational behavior was observed due to the effect of the web inclination in the inclined girder where the steel crossbeam was connected to the girder by the bolted end-plate moment connection. Therefore, in the experiment, the deflection of the inclined girder was 1.77-2.93 times greater than that of the vertical girder but the lateral deflection of the inclined girder was 0.4 times less than that of the vertical girder. Moreover, the tensile stress of the upper bolts in the inclined girder with low crossbeams was clearly 0.81 times lower than that of the vertical girder. According to the results, the design formula for vertical girders does not reflect the influence of the web inclination. Therefore, this study proposed the design procedures for the inclined girder to apply the bolted end-plate moment connection of the crossbeam to the inclined girder by reflecting the design change factors according to the effect of the web inclination.

A Study on the Development of Ship's Stern Tube Sealing System(I) -Based on Lip Seals- (선미관 밀봉장치 개발에 관한 연구 (I) - 맆 시일을 중심으로-)

  • 김영식;전효중;왕지석;정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.29-45
    • /
    • 1991
  • Lip type stern tube sealing systems have used in almost all the middle or large ships which are being constructed in these days. It seems that the pressure fluctuation of the seal ring interspace, the cross-section profile and the materials quality of the seal rings have great effects on the sealing fuction of this sealing system. In this paper, the mechanical movement of lip seal ring which plays the most important role in stern tube sealing system and the possibility of leakage caused by pressure fluctuation are studied by theory and experiment. Using the finite element method for the axi-symetric object which receives the torsional load, the displacement and stress analysis of the seal rings, and also the possibility of crack occurance is checked by theoretical analysis. If the force which seal ring lip periphery receives is too small, there will be the possibility of leakage caused by the pressure fluctuation of the seal ring interspace, and if this force is too large, the frictional force between the seal ring and the liner will become problematical. The possibility of leakage caused by hardening of seal ring materials and creep phenomena of tested seal rings are also examined. The trial seal rings were designed and manufactured using the program of displacement and stress analysis developed in this study and the experimental apparatus to test the trial seal rings was also designed and manufactured. This trial seal rings were fitted in the experimental apparatus which was made in the same form as an actual stern tube. The one side of this apparatus was filled with sea water and the other side of it was filled with the lubricating oil. The leakage of oil and sea water was checked and the temperature was measured, rotating the propeller shaft at the constant velocity by D.C. motor. It was proved that the trial seal rings made in Viton rubber functioned excellenty but the trial seal rings made in N.B.R. rubber had problem in its durability.

  • PDF

A Study on Improvement of Shear Test Apparatus in the Direct Shear Test Under Constant Pressure (정압(CD)조건 직접전단시험에 있어서 시험기의 개선에 관한 연구)

  • Kim Jae Young;Yang Tae Seon;Akihiko Ohshima
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2005
  • A direct shear test is classified roughly by one side simple shear test of confining horizontal displacement type and torsional shear test of non-confining one. Direct shear test that has been widely used so far has some problems with test apparatus, testing and the analysis, and in particular that its strength value is everestimated in sandy soils. Also, progressive failure of shearing process happens from shear apparatus restriction and because the shear strain and shear stress are erratic in specimen, we can not define the shear strain value. In the meantime, a simple shear test having advantage of direct shear test is an ideal test method that can get stress-strain relation on shear because it can deliver constant shearing deformation to specimen. However, simple shear test cannot be used practically, because its structure makes tester manufacturing difficult. This paper described a on outline of test apparatus, improvement of test method, and constant pressure test results based on the obtained from improved direct shear apparatus and the standardization of JGS soil testing method.

Evaluation of Structural Integrity of the ISO-based Moon Pool Type Diver Boats (ISO 기반 Moon Pool형 다이버 보트 구조 건전성 평가)

  • Kang, Byoung-mo;Oh, Woo-jun;Na, Hyun-ho;Choi, Ju-seok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.597-603
    • /
    • 2018
  • This Study investigates the Structural Integrity of Boats for Divers, given increased demands for Underwater and Recreational use. We conducted research on a Small Catamaran with a Moon Pool in the center of the Hull, using the Finite Element Method to calculate allowable stress based on the ISO Rule. We computed the coefficients defined in ISO 12215-5 and TC118.1225-7, and determined the suitability of using the ISO Standard and Allowable Stress Design method (ASD) by applying Longitudinal Bending Moment, Torsional moment, and Bottom Slamming Load. We also applied the Ultimate Strength Design Method (LFRD) using Finite Element Analysis (FEA). As a Result of this Research, it was found that ships with a Moon Pool do have Structural Integrity according to their Design in accordance with ISO and KR Regulations.