• Title/Summary/Keyword: torsional stress

Search Result 250, Processing Time 0.026 seconds

Study on Torsional Strength of Induction-Hardened Axle Shaft (고주파 열처리를 고려한 액슬 축 비틀림 거동 연구)

  • Kang, Dae-Hyun;Lee, Bum-Jae;Yun, Chang-Bae;Kim, Kang-Wuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.645-649
    • /
    • 2010
  • Induction hardening has been used to improve the torsional strength and characteristics of wear for axle shaft that is used to transmit driving torque from the differential to the wheel in automobiles. After the rapid heating and cooling processes of induction hardening are carried out, the shaft has residual stress and material properties change; this affects the allowable transmitted torque. The objective of this study is to predict the distribution of residual stress and estimate the torsional strength of induction-hardened axle shafts with residual stress. In this study, the finite element method is used to study the thermomechanical behavior of the material, and the results are compared with experimental results. The results indicate that the torsional strength of the axle shaft depends on the surface hardening depth and distribution of residual stress.

Study on Torsion due to Automotive Body Type at Track Driving (궤적주행 시 차체 종류에 따른 비틀림에 관한 연구)

  • Choi, Youn-Jong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Because there is no suspension and differential devices at cart body, the deformation of the frame happened during kart driving affects the driving performance caused by the elastic deformation and the fatigue life of kart frame resulted from the permanent deformation. The dynamic behavior of kart caused by the torsional deformation during circular driving is the important factor of these two kinds of deformations. In order to analyze the dynamic behavior of kart at this curved section, GPS is used to trace the track of kart and the torsional stress at kart-frame has been measured with real time. The mechanical properties of kart-frames for leisure and racing are investigated through material property analysis and tensile test. Torsional stress concentration and frame distortion are investigated through stress analysis on frame on the basis of study result. The real karts for leisure and racing kart are also tested in each driving condition by using the driving analysis equipment. The driving behavior of kart at the curved section are investigated through this test. As the phenomenon of load movement due to centrifugal force at car is happened during circular driving, the torsional stress occurs at cart steel frame.

Torsional wave in an inhomogeneous prestressed elastic layer overlying an inhomogeneous elastic half-space under the effect of rigid boundary

  • Kakar, Rajneesh
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.753-766
    • /
    • 2015
  • An investigation has been carried out for the propagation of torsional surface waves in an inhomogeneous prestressed layer over an inhomogeneous half space when the upper boundary plane is assumed to be rigid. The inhomogeneity in density, initial stress (tensile and compressional) and rigidity are taken as an arbitrary function of depth, where as for the elastic half space, the inhomogeneity in density and rigidity is hyperbolic function of depth. In the absence of heterogeneities of medium, the results obtained are in agreement with the same results obtained by other relevant researchers. Numerically, it is observed that the velocity of torsional wave changes remarkably with the presence of inhomogeneity parameter of the layer. Curves are compared with the corresponding curve of standard classical elastic case. The results may be useful to understand the nature of seismic wave propagation in geophysical applications.

Evaluation of torsional natural frequencies for non-tubular bonded joints

  • Pugno, Nicola;Ruotolo, Romualdo
    • Structural Engineering and Mechanics
    • /
    • v.13 no.1
    • /
    • pp.91-101
    • /
    • 2002
  • During the last several years, research activity on non-tubular bonded joints has concentrated on the effects of normal stress, bending moments and shear. Nevertheless, in certain situations, the structure may be subjected to twisting moments, so that the evaluation of its dynamic behaviour to torsional vibrations becomes of great importance even though evaluations of such loading conditions is entirely lacking in the literature. The aim of this article is to show that torsional natural frequencies of the non-tubular joint can be evaluated by determining the roots of a determinantal equation, derived by taking advantage of some analytical results obtained in a previous paper dealing with the analysis of the state of stress in the adhesive. Numerical results related to clamped-free and clamped-clamped joints complete the article.

Torsional Fatigue Characteristics of Aluminum/Composite Co-Cured Shafts with Axial Compressive Preload (축예하중을 가한 알루미늄/복합재료 동시경화 샤프트의 비틀림 피로 특성)

  • Kim, Jong-Woon;Hwang, Hui-Yun;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.183-186
    • /
    • 2003
  • Long shafts for power transmission should transmit torsional load with vibrational stability. Hybrid shafts made of unidirectional fiber-reinforced composite and metal have high fundamental bending natural frequency as well as high torque transmission capability. However, thermal residual stresses due to the coefficient difference of thermal expansion of the composite and metal are developed so that the high residual stresses decrease fatigue resistance of the hybrid shafts, especially at low operating temperatures. In this work, axial compressive preload was given to the shaft in order to change the residual stresses. Static and fatigue torsional tests were performed and correlated with stress analyses with respect to the preload and service temperature.

  • PDF

Dynamic torsional response measurement model using motion capture system

  • Park, Hyo Seon;Kim, Doyoung;Lim, Su Ah;Oh, Byung Kwan
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.679-694
    • /
    • 2017
  • The complexity, enlargement and irregularity of structures and multi-directional dynamic loads acting on the structures can lead to unexpected structural behavior, such as torsion. Continuous torsion of the structure causes unexpected changes in the structure's stress distribution, reduces the performance of the structural members, and shortens the structure's lifespan. Therefore, a method of monitoring the torsional behavior is required to ensure structural safety. Structural torsion typically occurs accompanied by displacement, but no model has yet been developed to measure this type of structural response. This research proposes a model for measuring dynamic torsional response of structure accompanied by displacement and for identifying the torsional modal parameter using vision-based displacement measurement equipment, a motion capture system (MCS). In the present model, dynamic torsional responses including pure rotation and translation displacements are measured and used to calculate the torsional angle and displacements. To apply the proposed model, vibration tests for a shear-type structure were performed. The torsional responses were obtained from measured dynamic displacements. The torsional angle and displacements obtained by the proposed model using MCS were compared with the torsional response measured using laser displacement sensors (LDSs), which have been widely used for displacement measurement. In addition, torsional modal parameters were obtained using the dynamic torsional angle and displacements obtained from the tests.

Effects of Generator Retrofit on Torsional Natural Frequency of Turbine-generator Train and Study on Measurement Results (발전기교체로 인한 축계의 비틀림 고유주파수 영향 및 측정결과 고찰)

  • Lee, Hyuk-Soon;Yoo, Seong-Yeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.267-273
    • /
    • 2013
  • Recently, turbine-generators have been replaced for the integrity reinforcement and the efficiency improvement, also, the blade's failures of LP turbines due to torsional vibration have been reported. Excessive torsional vibrations can result in failures of components. The severity of torsional oscillations and stress depends upon the separation margin between the excitation frequencies and torsional natural frequencies. Therefore it is needed to measure the torsional natural frequencies after replacement of the components to conform the separation margin of torsional natural frequencies. In this study torsional vibration measurements were performed after LP turbine and generator replacement and the torsional natural frequencies for the turbine-generator train were calculated to evaluate the effects of generator replacement on torsional natural frequencies of turbine-generator train. It is expected that these evaluation results will be used effectively to identify the root causes of torsional vibration problems.

A Fourier sine series solution of static and dynamic response of nano/micro-scaled FG rod under torsional effect

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.467-482
    • /
    • 2022
  • In the current work, static and free torsional vibration of functionally graded (FG) nanorods are investigated using Fourier sine series. The boundary conditions are described by the two elastic torsional springs at the ends. The distribution of functionally graded material is considered using a power-law rule. The systems of equations of the mechanical response of nanorods subjected to deformable boundary conditions are achieved by using the modified couple stress theory (MCST) and taking the effects of torsional springs into account. The idea of the study is to construct an eigen value problem involving the torsional spring parameters with small scale parameter and functionally graded index. This article investigates the size dependent free torsional vibration based on the MCST of functionally graded nano/micro rods with deformable boundary conditions using a Fourier sine series solution for the first time. The eigen value problem is constructed using the Stokes' transform to deformable boundary conditions and also the convergence and accuracy of the present methodology are discussed in various numerical examples. The small size coefficient influence on the free torsional vibration characteristics is studied from the point of different parameters for both deformable and rigid boundary conditions. It shows that the torsional vibrational response of functionally graded nanorods are effected by geometry, small size effects, boundary conditions and material composition. Furthermore, for all deformable boundary conditions in the event of nano-sized FG nanorods, the incrementing of the small size parameters leads to increas the torsional frequencies.

enerator During the State of Torsional Interaction (비틀림 상오작용 상태에 있는 터어보 발전기의 전기적 특성)

  • Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.1
    • /
    • pp.10-17
    • /
    • 1988
  • The torsional resonance of the generator shaft system has the possibility of inducing voltages across the stator winding because it is a carrier with the field excitation. And these torsional induced stator currents inducs the eddy current in the rotor. This paper describes the eddy current based on the double Fourier series method. The forces generating during the torsional interaction are computed using the Maxwell's magnetic stress tensor for each of the Fouriercomponennts. And then, these forces of the Fourier components are evaluated by the Parseval's theorem.

  • PDF

Buckling and postbuckling behavior of solid superelastic shape memory alloy shafts

  • Rahman, Muhammad Ashiqur;Qiu, Jinhao;Tani, Junji
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.339-352
    • /
    • 2006
  • Observing the unique stress-strain curves of the superelastic shape memory alloy (SMA) in tension and compression, the primary intention of this study is to investigate the behavior of the shafts made of the same material, under torsional loading-unloading cycles for large angle of twist. Experiments have been performed for the superelastic SMA shafts with different unsupported lengths and angles of twist and the results are compared with those of stainless steel (SUS304) shafts under similar test conditions. As expected for the superelastic SMA, the residual strains are small enough after each cycle and consequently, the hysteresis under loading-reverse loading is much narrower than that for the SUS304. For large angle of twists, the torsional strength of the superelastic SMA increases nonlinearly and exceeds that of SUS304. Most interestingly, the slender solid superelastic SMA shafts are found to buckle when acted upon torsion for large angle of twist.