• Title/Summary/Keyword: torsional stiffness

Search Result 360, Processing Time 0.021 seconds

A Study on the Behavior of Reinforced Concrete Beams under Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 거동에 관한 연구)

  • 음성우;박병용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.7-12
    • /
    • 1990
  • This paper presents an equation for balanced-steel ratio in longitudinal and transverse direction throughout analysis based on a space truss model introducing the concept of concrete softening effect. This paper also presents as equation for postcracking torisonal stiffness throughout analysis considering the equilibrium conditions and compatibility conditions based on shear panel. Correlation between predicted postcracking torsional stiffness, and experimental results was good, not only for beams tested in this paper but also for others in the literature.

  • PDF

A Study on the Static Eccentricities of Buildings Designed by Different Design Eccentricities (설계편심의 크기에 따른 비틀림 비정형 건물의 최종 정적편심 크기의 비교에 관한 연구)

  • Lee, Kwang-Ho;Jeong, Seoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.33-40
    • /
    • 2012
  • To reduce the vulnerability of torsional irregular buildings caused by seismic loads, the torsional amplification factor was introduced by the seismic code. This factor has been applied differently in a variety of seismic codes. In this study, the final static eccentricity, and the lateral and torsional stiffness ratios of buildings designed with different design eccentricities were compared. The increment of the torsional amplification factor resulted in a decrement of the final static eccentricity of the building. However, after reaching the maximum value of this factor, the final static eccentricity of the building increased again. The final static eccentricity of the building designed by multiplying the sum of the inherent and accidental eccentricity by the torsional amplification factor was zero or had a minus value, depending to the position of the vertical element.

Extending torsional balance concept for one and two way asymmetric structures with viscous dampers

  • Amir Shahmohammadian;Mohammad Reza Mansoori;Mir Hamid Hosseini;Negar Lotfabadi Bidgoli
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.417-427
    • /
    • 2023
  • If the center of mass and center of stiffness or strength of a structure plan do not coincide, the structure is considered asymmetric. During an earthquake, in addition to lateral vibration, the structure experiences torsional vibration as well. Lateraltorsional coupling in asymmetric structures in the plan will increase lateral displacement at the ends of the structure plan and, as a result, uneven deformation demand in seismically resistant frames. The demand for displacement in resistant frames depends on the magnitude of transitional displacement to rotational displacement in the plan and the correlation between these two. With regard to the inability to eliminate the asymmetrical condition due to various reasons, such as architectural issues, this study has attempted to use supplemental viscous dampers to decrease the correlation between lateral and torsional acceleration or displacement in the plan. This results in an almost even demand for lateral deformation and acceleration of seismic resistant frames. On this basis, using the concept of Torsional Balance, adequate distribution of viscous dampers for the decrease of this correlation was determined by transferring the "Empirical Center of Balance" (ECB) to the geometrical center of the structure plan and thus obtaining an equal mean square value of displacement and acceleration of the plan edges. This study analyzed stiff and flexible torsional structures with one-way and two-way mass asymmetry in the Opensees software. By implementing the Particle Swarm Optimization (PSO) algorithm, the optimum formation of dampers for controlling lateral displacement and acceleration is determined. The results indicate that with the appropriate distribution of viscous dampers, not only does the lateral displacement and acceleration of structure edges decrease but the lateral displacement or acceleration of the structure edges also become equal. It is also observed that the optimized center of viscous dampers for control of displacement and acceleration of structure depends on the amount of mass eccentricity, the ratio of uncoupled torsional-to-lateral frequency, and the amount of supplemental damping ratio. Accordingly, distributions of viscous dampers in the structure plan are presented to control the structure's torsion based on the parameters mentioned.

The Interactive Effect of Translational Drift and Torsional Deformation on Shear Force and Torsional Moment (전단력 및 비틀림 모멘트에 의한 병진 변형 및 비틀림 변형의 상호 작용 효과)

  • Kim, In-Ho;Abegaz, Ruth A.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.277-286
    • /
    • 2022
  • The elastic and inelastic responses obtained from the experimental and analytical results of two RC building structures under the service level earthquake (SLE) and maximum considered earthquake (MCE) in Korea were used to weinvestigate the characteristics of the mechanisms resisting shear and torsional behavior in torsionally unbalanced structures. Equations representing the interactive effect of translational drift and torsional deformation on the shear force and torsional moment were proposed. Because there is no correlation in the behavior between elastic and inelastic forces and strains, the incremental shear forces and incremental torsional moments were analyzed in terms of their corresponding incremental drifts and incremental torsional deformations with respect to the yield, unloading, and reloading phases around the maximum edge-frame drift. In the elastic combination of the two dominant modes, the translational drift mainly contributes to the shear force, whereas the torsional deformation contributes significantly to the overall torsional moment. However, this phenomenon is mostly altered in the inelastic response such that the incremental translational drift contributes to both the incremental shear forces and incremental torsional moments. In addition, the given equation is used to account for all phenomena, such as the reduction in torsional eccentricity, degradation of torsional stiffness, and apparent energy generation in an inelastic response.

Control of 3-D coupled responses of wind-excited tall buildings by a spatially placed TLCD system

  • Liang, Shuguo;Li, Qiusheng;Qu, Weilian
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.193-207
    • /
    • 2000
  • The possible application of a spatially placed passive tuned liquid column damper system for suppressing coupled lateral-torsional responses of tall buildings is investigated in this paper. The wind loads acting on rectangular tall buildings are analytically expressed as 3-D stochastic model. Meanwhile, the 3-D responses of tall buildings may be coupled due to eccentricities between the stiffness and mass centers of the buildings. In these cases, torsional responses of the buildings are rather larger, and a TLCD system composed of several TLCD located near the sides of the buildings is more effective than the same TLCD placed at the building center in reducing both translational and torsional responses of the buildings. In this paper, extensive analytical and numerical work has been done to present the calculation method and optimize the parameters of such TLCD systems. The numerical examples show that the spatially placed TLCD system can reduce coupled along-wind, across-wind and torsional responses significantly with a fairly small mass ratio.

Modeling of the Mechanical Drivetrain of an Electric Vehicle for Investigation of Torsional Oscillation Characteristics (전기자동차 기계적 구동계의 모델링 및 비틀림 진동특성 분석)

  • Kim, Ho-Gi;Oh, Joong-Seok;Kim, Sam-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.866-872
    • /
    • 2008
  • Torsional oscillations of the mechanical drivetrain in electric vehicles are generated under rapid driving conditions. These lead to an uncomfortable jerking of the vehicle and to an increased stress of the mechanical components. To analyze this phenomenon, a drivetrain model is constructed with lumped parameters. The model parameters are identified by geometrical design data and experimental tests. The proposed model is validated by simulation and experimental tests in the time and the frequency domains. As a result, the torsional oscillations are observed at 7Hz of a low damped natural frequency. Also, the analysis of the effect of the parameter variations on the oscillations shows that the oscillation characteristic is mainly dependent on the rotor inertia, and the stiffness of the mounting of the drive aggregate and the driveshaft. The results will be utilized on the basis of the design of an electric drivetrain and an active control of drivetrain oscillations.

Mechanical behaviors of concrete-filled rectangular steel tubular under pure torsion

  • Ding, Fa-xing;Sheng, Shi-jing;Yu, Yu-jie;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.291-301
    • /
    • 2019
  • Pure torsion loading conditions were not frequently occurred in practical engineering, but the torsional researches were important since it's the basis of mechanical property researches under complex loading. Then a 3D finite element model with precise material constitutive models was established, and the effectiveness was verified with test data. Parametric studies with varying factors as steel yield strength, concrete strength and sectional height-width ratio, were performed. Internal stress state and the interaction effect between encased steel tube and the core concrete were analyzed. Results indicated that due to the confinement effect between steel tube and core concrete, the torsional strength of CFT columns was greatly improved comparing to plain concrete columns. The steel ratio would greatly influence the torque share between the steel tube and the core concrete. Then the torsional strength calculation formulas for core concrete and the whole CFT column were proposed. The proposed formula could be simpler and easier to use with guaranteed accuracy. Related design codes were more conservative than the proposed formula, but the proposed formula presented more satisfactory agreement with experimental results.

The Measurement Test of Stiffness and Natural Frequencies for Bearingless Rotor System of Helicopter (헬리콥터용 무베어링 로터 시스템의 강성 및 고유 진동수 측정)

  • Yun, Chul Yong;Kim, Deog-kwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.881-887
    • /
    • 2015
  • The stiffness and natural frequencies for blades, flexbeam, and torque tube of bearingless rotor system are measured to determine the material input properties such as mass distributions and stiffness distribution for the rotor dynamics and load analysis. The flap stiffness, lag stiffness, and torsional stiffness are calculated by measuring section strain or twist angle, gages position, and applied loads through bending and twist tests. The modal tests are undertaken to find out the natural frequencies for flap, lag, torsion modes in non-rotating conditions. The stiffness values and mass properties are tuned and updated to match prediction frequencies to the measured frequencies. The rotorcraft comprehensive code(CAMRAD II) is used to analyze the natural frequencies of the specimens. The analysis results with the updated material properties agree well with the measured frequencies. The updated properties will be used to analyze the rotor stability, dynamic characteristics and loads for the rotor rotation test in a whirl tower.

Study on Frame Stiffness based on Lamination Pattern of Carbon Bicycle Frame Materials (카본 자전거 프레임 소재의 적층 패턴에 따른 프레임 강성 연구)

  • Choi, Ung-Jae;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.51-58
    • /
    • 2021
  • The notion of leisure has changed with industrial development and improvement in life quality. Bicycling is a healthy sport; it is an exercise performed while enjoying nature. There have been many changes in the materials that are used to manufacture the bicycle frame. Iron and aluminum have been mainly used in bicycle frames. However, carbon-based materials are lighter and stronger than metal frames. The bicycles made of carbon composite changes frame rigidity depending on the direction of the carbon sheet sacking angle. We study the direction of composite material and how they affect the stiffness of frames based on the stacking angle.

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.