• Title/Summary/Keyword: torsional shafting

Search Result 77, Processing Time 0.023 seconds

Dynamic Characteristics of torsion for Marine Propulsion Shafting system with Elastic Rubber Coupling (고무 탄성커플링을 갖는 선박 추진용 축계 비틀림의 동특성)

  • 이돈출;김상환;유정대
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.742-748
    • /
    • 2003
  • As for marine propulsion shafting system using 4 stroke diesel engine, it is common to apply reduction gear box between diesel engine and shafting with a view of increasing mechanical efficiency, which inevitably require elastic coupling due to avoid chattering and hammering inside of gear box. In this study, optimum method of rectifying propulsion shafting system in case of 750ton fishing vessel specially in a view of torsional vibration, is theoretically studied. After exchange of diesel engine and gear box, analysis result of torsional vibration get worse and so some countermeasure are needed. The elastic coupling is modified from present block type rubber coupling showing relatively high torsional stiffness to rubber coupling with two series elements directly connected. The vibration measurement using two laser torsion meters was done during sea trial, whose results are compared to those of calculation and verified.

  • PDF

A study on the calculation of synthesized torsional vibration for the marine diesel engine shafting by the mechanical impedance method (기계적 임피던스법에 의한 박용디젤기관 추진축계의 합성비틀림진동 계산에 관한 연구)

  • 박용남;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.146-155
    • /
    • 1986
  • Until recently, the calculation of torsional vibration for the marine diesel engine shafting has been performed only for vibratory stresses of resonant points and vibratory stresses for other engine speeds are determined by the estimation. With the advent of energy-saving engines which have a long stroke and a small number of cylinders, the first major critical torsional vibration of the propulsion shaft appears ordinarily near the MCR speed of engine and the flank of its vibratory stress exceeds now and then the limit stress defined by the rules of Classification Society. In order to know the above condition in the design stage of propulsion shafting, it is necessary to calculate the forced torsional vibration with the damping of propulsion shafting for all orders and to synthesize its calculated results according to their phase angles. In this study, the forced torsional vibrations with the damping of propulsion shafting are calculated for several orders by mechanical impedance method, and their results are synthesized. A computer program for above calculations are developed and some test-runs of the developed program are performed for propulsion shaftings of actual ships. The results of calculations are compared with measured values and also with those of the modal analysis method. They show fairly good agreements and the developed program is checked up on its reliability.

  • PDF

A Study on the Analysis of Torsional Vibration of Branched Shafting System for Propulsion and Lift in Air Cushion Vehicle (공기부양선의 추진 및 부양축계 비틀림진동 해석 연구)

  • Son, Seon-Tae;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.335-342
    • /
    • 2007
  • A propulsion and lift shafting system in an air cushion vehicle is flexible multi-elements system which consists of two aeroderivative gas turbines with own bevel gears, four stage lift fan reduction gear, two stage propulsion reduction gear air propellers and high capacity of lifting fans. In addition, the system includes the multi-branched shafting with multi-gas turbine engines and thin walled shaft with flexible coupling. Such a branched shafting system has very intricate vibrating characteristics and especially, the thin walled shaft with flexible couplings can lower the torsional natural frequencies of shafting system to the extent that causes a resonance in the range of operating revolution. In this study, to evaluate vibrational characteristics some analytical methods for the propulsion and lift shafting system are studied. The analysis, including natural frequencies and mode shapes, for five operation cases of the system is conducted using ANSYS code with a equivalent mass-elastic model.

A Study on Coupled Vibrations of Diesel Engine Propulsion Shafting (1st Report: Effects of Coupling on Natural Frequencies and their Modes) (디젤기관 추진축계의 연성진동에 관한 연구(제1보:연성이 고유진동수와 그의 모드에 미치는 영향))

  • 전효중;이돈출;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.95-106
    • /
    • 2001
  • When the crankshaft of diesel engine has more than 3 throws, which are arranged in a different plane, its vibration induces coupled motions, especially the coupled torsional and axial vibration. Nowadays, the torsional vibration which is influenced rather weak than axial one, can be theoretically calculated fairly accurately, but theoretical calculation results of the axial vibration which is influenced strongly from torsional vibration is not so good. To get accurate calculation results of axial vibration, coupled axial-torsional vibration must be treated. In this investigation, coupled effects of vibration of diesel engine propulsion shafting are analyzed theoretically and some simple calculation methods are also studied. On this first report, effects of coupling on natural frequencies and their modes are mainly studied, setting the each mass in 4 degrees of freedom.

  • PDF

A Study on the Characteristics and Control of Torsional Vibration for Engine Shafting Systems with Elastic Coupling (탄성커플링을 갖는 기관축계의 비틀림진동 특성 및 제어)

  • 박용남;이진모;김태언;김의간
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.70-75
    • /
    • 1997
  • Power driving shaft systems with reduction gear are frequently equipped with elastic couplings to protect reduction gears and to relieve the torsional vibration problems. In this study, torsional vibration characteristics for the engine shafting system with elastic couplings are investigated and the calculating program is developed. It is confirmed that torsional vibration can be controled by careful selection of a elastic coupling with suitable characteristics and the suitability of a elastic coupling can only be determined as a result of a complete torsional vibration analysis including engine conditions such as misfring for shafting system.

  • PDF

A Study on the Thoretical Analysis of the Torque Harmonics for Diesel Engines (디젤기관의 토크 하모닉스에 대한 이론적 해석)

  • 이용진;장민오;김의간;전효중
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.465-473
    • /
    • 2000
  • In this crankshaft of marine diesel engines the exciting torques are produced by gas pressure and reciprocating masses. These torques are periodically changing and are extremely out of balance. To calculate the torsional vibrations of propulsion shafting caused by unbalanced torque the torque harmonics are utilized. Until now to calculate the torsional vibrations of propulsion shafting. the torque harmonics have been supplied by the engine maker. When the torque harmonics of an engine are not available the torque harmonics of a similar engine type had to be used. However such data is not suitable for the reliable calculations of torsional vibrations. In this paper the combustion characteristics of marine diesel engines including $\rho{-}\upsilon$ diagram are investigated and the torque harmonics based on these are theoretically calculated. reliability of the calculations is confirmed by comparing them with those of an engine maker. This study should prove useful for the calculations of torsional vibrations for diesel engine propulsion shafting. particularly for 4-stroke engines whose torque harmonics are difficult to obtain directly from the engine and not ordinarily supplied by the engine maker.

  • PDF

Fatigue Strength Analysis of Propulsion Shafting System with Two Stroke Low Speed Diesel Engine by Torsional Vibration in Frequency Domain (주파수 영역에서 비틀림진동에 의한 저속 2행정 디젤엔진을 갖는 추진축계의 피로강도 해석)

  • Kim, S.H.;Lee, D.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.416-422
    • /
    • 2007
  • Prime movers in most large merchant ships adapt two stroke low speed diesel engine which has higher efficiency, mobility and durability. However, severe torsional vibration in these diesel engines may be induced by higher fluctuation of combustion pressures. Consequently, it may lead sometimes to propulsion shafting failure due to the accumulated fatigue stresses. Shaft fatigue strength analysis had been done traditionally in time domain but this method is complicated and difficult in analysing bi-modal vibration system such as the case of cylinder misfiring condition. In this paper authors introduce an assessment method of fatigue strength estimation for propulsion shafting system with two stroke low speed diesel engine in the frequency domain.

  • PDF

Optimum Design of Torsional Shafting Using Real-Coded Genetic Algorithm (실수코딩 유전알고리즘을 이용한 비틀림 축계의 최적설계)

  • 최명수;문덕홍;설종구
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.284-290
    • /
    • 2003
  • It is very important to minimize the weight of shaft from the viewpoint of economics and manufacture. For minimizing effectively the diameter of shaft in torsional shafting, authors developed computer program using the real-coded genetic algorithm which is one of optimizing techniques and based on real coding representation of genetic algorithm. In order to confirm the accuracy and effectiveness of the developed computer program, the computational results by the developed program were compared with those of conventional strength, stiffness and vibration designs for a generator shafting.

Studies on Coupled Vibrations of Diesel Engine Propulsion Shafting (2nd Report : Analyzing of Forced Vibration with Damping) (디젤기관 추진축계의 연성진동에 관한 연구 (제2보: 강제 감쇠 연성진동 해석))

  • 이돈출;김의간;전효중
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.99-107
    • /
    • 2000
  • With the results of calculation for natural frequencies, the forced reponses of coupled vibration of propulsion shafting were analysed by the modal analysis method. For the forced response analysis, axial exciting forces, axial damper/detuner, propeller exciting forces and damping coefficients were extensively investigated. As the conclusion of this study, some items are cleared as next. - The torsional amplitudes are not influenced by the radial excitation forces. - The axial vibrational amplitudes are influenced by the tangential exciting forces. An increase of amplitude is observed for the speed range in the neighbourhood of any torsional critical speed. - The coupling effect becomes larger if torsional and axial critical speed are closer together. - The axial exciting force of propeller is relatively strong, comparing with those of axial forces of cylinder gas pressure and oscillating inertia of reciprocating mechanism. Therefore, as a resume one can say, that- Torsional vibration calculation with the classical one dimension model is still valid. - The influence of torsional excitation at each crank upon the axial vibration is impotent, especially in the neighbourhood of a torsional critical speed. That means that the calculation of axial vibration with the classical one dimension model is insufficient in most of cases. - The torsional exciting torque of propeller can be neglected in most of cases. But, the axial exciting forces of propeller can not be neglected for calculating axial vibration of propulsion shafting.

  • PDF

Probabilistic Analysis of Coupled Axial and Torsional Vibration of Marine Diesel Propulsion Shafting System (선박디젤추진축계 종.비틂연성진동의 확률적 해석)

  • S.Y. Ahn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.71-78
    • /
    • 1998
  • Recently, modern long-stroke diesel engines with small number of cylinders have been installed for energy saving and simpler maintenance. These kinds of low speed diesel engine produce large torsional vibration in the shafting, which induces the excessive vibratory stresses in the shafting and large propeller thrust variation. This thrust variation excites vibrations of the shafting and superstructure in the longitudinal direction. Up to now the deteriministic analysis of coupled vibration of marine shafting system has been performed. In this paper probabilistic analysis method of the marine diesel propulsion shafting system under coupled axial and torsional vibrations is presented. For the purpose of this work, the torsional and axial vibration excitations of engine and propeller are assumed to be probabilistic while the lateral excitation is assumed to be deterministic. The probabilistic analysis is based on a response surface and Monte-Carlo simulation. Numerical results based on the proposed method are compared with results calculated using the conventional deterministic analysis method. The results obtained make it clear that the proposed method gives a substantial increase in information about shafting behaviour as compared with the deterministic method.

  • PDF