• Title/Summary/Keyword: torsional member

Search Result 53, Processing Time 0.029 seconds

Analysis of the Vibration Fatigue for the Diesel Engine and Reduction Gear Connecting Shaft in a Ship (선박용 감속기어-디젤엔진 연결축의 진동 피로파손 분석)

  • Han, HyungSuk;Lee, KyungHyun;Park, Sungho;Kim, ChungSik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.407-413
    • /
    • 2014
  • The diesel engine and reduction gear combination is one of the common propulsion system in a naval vessel. Since the diesel engine has torsional vibration caused by reciprocating motion of the mass and gas pressure force of the cylinder, high cycle torsional fatigue can be occurred. Therefore, ROK navy restricts the maximum stress of the propulsion shaft according to MIL G 17859D. In this paper, the root cause for the failure of the diesel engine and reduction gear connecting shaft occurred in typical naval vessel is investigated based on the measured bending and torsional moment according to MIL G 17859D procedure.

Evaluation of Internal Bracing Member Forces due to Distortional Behaviors of Tub Section Steel Box Girders (U형 강박스 거더의 뒤틀림 거동에 의한 내부 수직브레이싱 부재력 평가)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.249-259
    • /
    • 2011
  • In this study, the distortional behaviors of tub-section steel girders subjected to torsional loading were analyzed, and predictor equations were developed for estimating the member forces induced in the internal bracing system installed in the steel tub girders. Torsional loadings originated either by eccentric vertical loading or girder curvature were decomposed into the pure torsional force component that does not affect the distortional box deformation, and into the distortional force component that directly induces box distortion. The axial member forces induced in the internal cross frames were formulated as a function of the magnitude of torsional loading through the analytical investigation of the interactions between the distortional force component and internal cross frames. To verify the proposed equations, three-dimensional finite element analysis (3D FEA) was conducted for the straight simple-span girder and the three-span continuous girder samples. Very good agreement was found between the member forces from the FEA and the proposed equations.

Critical Loads of Eccentrically Loaded Struts with Thin-Walled Open Sections (편심하중을 받는 박벽개단면 압축재의 임계하중)

  • 나영진;이수곤
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.135-140
    • /
    • 1996
  • Single angle or channel with thin-walled open section can be used as compression member for example as web member in truss. In this case the inevitable eccentricity due to fabrication is commonly neglected in structural design. However eccentricity effect should be considered in the member design, especially in case of compression member. The critical loads of compression members that buckle by twisting or by a combination of bending and twisting are to be determined by solving governing differential equations. In this paper, the investigations are limited to the rolled channels([), equal-leg angles(L), lipped channels(C) and the applied loads are assumed to have some eccentricities.

  • PDF

Multi-potential capacity for reinforced concrete members under pure torsion

  • Ju, Hyunjin;Han, Sun-Jin;Kim, Kang Su;Strauss, Alfred;Wu, Wei
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.401-414
    • /
    • 2020
  • Unlike the existing truss models for shear and torsion analysis, in this study, the torsional capacities of reinforced concrete (RC) members were estimated by introducing multi-potential capacity criteria that considered the aggregate interlock, concrete crushing, and spalling of concrete cover. The smeared truss model based on the fixed-angle theory was utilized to obtain the torsional behavior of reinforced concrete member, and the multi-potential capacity criteria were then applied to draw the capacity of the member. In addition, to avoid any iterative calculation in the existing torsional behavior model, a simple strength model was suggested that considers key variables, such as the effective thickness of torsional member, principal stress angle, and strain effect that reduces the resistance of concrete due to large longitudinal tensile strain. The proposed multi-potential capacity concept and the simple strength model were verified by comparing with test results collected from the literature. The study found that the multi-potential capacity could estimate in a rational manner not only the torsional strength but also the failure mode of RC members subjected to torsional moment, by reflecting the reinforcing index in both transverse and longitudinal directions, as well as the sectional and material properties of RC members.

Experimental study on ultimate torsional strength of PC composite box-girder with corrugated steel webs under pure torsion

  • Ding, Yong;Jiang, Kebin;Shao, Fei;Deng, Anzhong
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.519-531
    • /
    • 2013
  • To have a better understanding of the torsional mechanism and influencing factors of PC composite box-girder with corrugated steel webs, ultimate torsional strength of four specimens under pure torsion were analyzed with Model Test Method. Monotonic pure torsion acts on specimens by eccentric concentrated loading. The experimental results show that cracks form at an angle of $45^{\circ}$ to the member's longitudinal axis in the top and bottom concrete slabs. Longitudinal reinforcement located in the center of cross section contributes little to torsional capacity of the specimens. Torsional rigidity is proportional to shape parameter ${\eta}$ of corrugation and there is an increase in yielding torque and ultimate torque of specimens as the thickness of corrugated steel webs increases.

An experimental and numerical investigation on the effect of longitudinal reinforcements in torsional resistance of RC beams

  • Khagehhosseini, A.H.;Porhosseini, R.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.247-263
    • /
    • 2013
  • It is evident that torsional resistance of a reinforced concrete (RC) member is attributed to both concrete and steel reinforcement. However, recent structural design codes neglect the contribution of concrete because of cracking. This paper reports on the results of an experimental and numerical investigation into the torsional capacity of concrete beams reinforced only by longitudinal rebars without transverse reinforcement. The experimental investigation involves six specimens tested under pure torsion. Each specimen was made using a cast-in-place concrete with different amounts of longitudinal reinforcements. To create the torsional moment, an eccentric load was applied at the end of the beam whereas the other end was fixed against twist, vertical, and transverse displacement. The experimental results were also compared with the results obtained from the nonlinear finite element analysis performed in ANSYS. The outcomes showed a good agreement between experimental and numerical investigation, indicating the capability of numerical analysis in predicting the torsional capacity of RC beams. Both experimental and numerical results showed a considerable torsional post-cracking resistance in high twist angle in test specimen. This post-cracking resistance is neglected in torsional design of RC members. This strength could be considered in the design of RC members subjected to torsion forces, leading to a more economical and precise design.

Strength and Lateral Torsional Behavior of Horizontally Curved Steel I-Girders Subjected to Equal End Moments (양단 균일 모멘트를 받는 수평곡선 I형 강재 거더의 횡-비틀림 거동 및 강도 산정 방안)

  • Lee, Keesei;Lee, Manseop;Choi, Junho;Kang, Youngjong
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • A curved member should resist bending and torsional moments simultaneously even though the primary load is usually supposed to be gravitational load. The torsional moment causes complicate stress state and also can result in early yielding of material to reduce member strength. According to analysis results, the strength of a curved member that has 45 degrees of subtended angle could decrease more than 50% compare to straight girder. Nevertheless, there have been very few of researches related with ultimate strength of curved girders. In this study, various kinds of stiffness about bending, pure torsion and warping were considered with a number of models in order to verify the main factor that affects ultimate behavior of curved girder. Lateral and rotational displacement of curved member were introduced as lateral-torsional-vertical behavior and bending-torsional moment interaction curve was derived. Finally, a strength equation for ultimate moment of horizontally curved steel I-girders subjected to equal end moments based on the interaction curves. The equation could take account of the effect of curvature, unbraced length and sectional properties.

Torsional Behavior of Reinforced Concrete Multi-Story Building under Seismic Loading

  • Hong, Sung-Gul;Moritz, Alex P.;Kim, NamHee
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.314-321
    • /
    • 2000
  • Excessive torsional behavior of asymmetric building structures is observed to be the main cause of the poor seismic performance. Concepts of current design provisions for torsion are based on the assumption that the strength of the lateral load resisting elements can be adjusted without changing their stiffness. This paper investigates inelastic torsional effects of multi-story high rise residential building in Korea on increase of strength demand and ductility of members using some methods published in literature. The methods analyze the reduction of strength and member ductility resulting from torsional mechanisms. This study shows that use of these concepts control inelastic torsion during preliminary seismic design of multi-story building of irregular plans.

  • PDF

Effective torsional stiffness of reinforced concrete structural walls

  • Luo, Da;Ning, Chaolie;Li, Bing
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.119-127
    • /
    • 2019
  • When a structural wall is subjected to multi-directional ground motion, torsion-induced cracks degrade the stiffness of the wall. The effect of torsion should not be neglected. As a main lateral load resisting member, reinforced concrete (RC) structural wall has been widely studied under the combined action of bending and shear. Unfortunately, its seismic behavior under a combined action of torsion, bending and shear is rarely studied. In this study, torsional performances of the RC structural walls under the combined action is assessed from a comprehensive parametrical study. Finite element (FE) models are built and calibrated by comparing with the available experimental data. The study is then carried out to find out the critical design parameter affecting the torsional stiffness of RC structural walls, including the axial load ratio, aspect ratio, leg-thickness ratio, eccentricity of lateral force, longitudinal reinforcement ratio and transverse reinforcement ratio. Besides, to facilitate the application in practice, an empirical equation is developed to estimate the torsional stiffness of RC rectangular structural walls conveniently, which is found to agree well with the numerical results of the developed FE models.

Combined Design Method for Shear and Torsional Moment (전단과 비틀림모멘트 설계의 조합)

  • Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2011
  • Both shear and torsional moments apply shear stresses on cross-section of a member, which need to be considered in the design. But in the current Korean Building Code, the design equations for shear and torsional moments are expressed in terms of the sectional strength with different units, causing figures to be drawn separately in two axes. If the design equations are expressed in terms of stresses, then the stresses of shear and torsional moments can be added, allowing figures to be drawn in one axis for easy recognition of the design procedure and the final design results. Moreover, the current code's design equations for shear and torsional moments are considered separately with the intention of summing the area of stirrups with respect to unit length for shear moment ($A_{\upsilon}/s$) and torsional moment ($2A_t/s$). Since the size or type of vertical stirrups are predetermined in the design process, the design equations are expressed in terms of the spacing of stirrups rather than the $A_{\upsilon}/s$ and $2A_t/s$ terms, clarifying various design steps and a design process.