• 제목/요약/키워드: torsional damper

검색결과 92건 처리시간 0.03초

Multiple tuned mass dampers for controlling coupled buffeting and flutter of long-span bridges

  • Lin, Yuh-Yi;Cheng, Chii-Ming;Lee, Chung-Hau
    • Wind and Structures
    • /
    • 제2권4호
    • /
    • pp.267-284
    • /
    • 1999
  • Multiple tuned mass dampers are proposed to suppress the vertical and torsional buffeting and to increase the aerodynamic stability of long-span bridges. Each damper has vertical and torsional frequencies, which are tuned to the corresponding frequencies of the structural modes to suppress the resonant effects. These proposed dampers maintain the advantage of traditional multiple mass dampers, but have the added capability of simultaneously controlling vertical and torsional buffeting responses. The aerodynamic coupling is incorporated into the formulations, allowing this model to effectively increase the critical speed of a bridge for either single-degree-of-freedom flutter or coupled flutter. The reduction of dynamic response and the increase of the critical speed through the attachment of the proposed dampers to the bridge are also discussed. Through a parametric analysis, the characteristics of the multiple tuned mass dampers are studied and the design parameters - including mass, damping, frequency bandwidth, and total number of dampers - are proposed. The results indicate that the proposed dampers effectively suppress the vertical and the torsional buffeting and increase the structural stability. Moreover, these tuned mass dampers, designed within the recommended parameters, are not only more effective but also more robust than a single TMD against wind-induced vibration.

Control of 3-D coupled responses of wind-excited tall buildings by a spatially placed TLCD system

  • Liang, Shuguo;Li, Qiusheng;Qu, Weilian
    • Wind and Structures
    • /
    • 제3권3호
    • /
    • pp.193-207
    • /
    • 2000
  • The possible application of a spatially placed passive tuned liquid column damper system for suppressing coupled lateral-torsional responses of tall buildings is investigated in this paper. The wind loads acting on rectangular tall buildings are analytically expressed as 3-D stochastic model. Meanwhile, the 3-D responses of tall buildings may be coupled due to eccentricities between the stiffness and mass centers of the buildings. In these cases, torsional responses of the buildings are rather larger, and a TLCD system composed of several TLCD located near the sides of the buildings is more effective than the same TLCD placed at the building center in reducing both translational and torsional responses of the buildings. In this paper, extensive analytical and numerical work has been done to present the calculation method and optimize the parameters of such TLCD systems. The numerical examples show that the spatially placed TLCD system can reduce coupled along-wind, across-wind and torsional responses significantly with a fairly small mass ratio.

Buffeting response control of a long span cable-stayed bridge during construction using semi-active tuned liquid column dampers

  • Shum, K.M.;Xu, Y.L.;Guo, W.H.
    • Wind and Structures
    • /
    • 제9권4호
    • /
    • pp.271-296
    • /
    • 2006
  • The frequency of a traditional tuned liquid column damper (TLCD) depends solely on the length of liquid column, which imposes certain restrictions on its application to long span cable-stayed bridges during construction. The configuration of a cable-stayed bridge varies from different construction stages and so do its natural frequencies. It is thus difficult to apply TLCD with a fixed configuration to the bridge during construction or it is not economical to design a series of TLCD with different liquid lengths to suit for various construction stages. Semi-active tuned liquid column damper (SATLCD) with adaptive frequency tuning capacity is studied in this paper for buffeting response control of a long span cable-stayed bridge during construction. The frequency of SATLCD can be adjusted by active control of air pressures inside the air chamber at the two ends of the container. The performance of SATLCD for suppressing combined lateral and torsional vibration of a real long span cable-stayed bridge during construction stage is numerically investigated using a finite element-based approach. The finite element model of SATLCD is also developed and incorporated into the finite element model of the bridge for predicting buffeting response of the coupled SATLCD-bridge system in the time domain. The investigations show that with a fixed container configuration, the SATLCD with adaptive frequency tuning can effectively reduce buffeting response of the bridge during various construction stages.

Tuned liquid column dampers with adaptive tuning capacity for structural vibration control

  • Shum, K.M.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제20권5호
    • /
    • pp.543-558
    • /
    • 2005
  • The natural frequencies of a long span bridge vary during its construction and it is thus difficult to apply traditional tuned liquid column dampers (TLCD) with a fixed configuration to reduce bridge vibration. The restriction of TLCD imposed by frequency tuning requirement also make it difficult to be applied to structure with either very low or high natural frequency. A semi-active tuned liquid column damper (SATLCD), whose natural frequency can be altered by active control of liquid column pressure, is studied in this paper. The principle of SATLCD with adaptive tuning capacity is first introduced. The analytical models are then developed for lateral vibration of a structure with SATLCD and torsional vibration of a structure with SATLCD, respectively, under either harmonic or white noise excitation. The non-linear damping property of SATLCD is linearized by an equivalent linearization technique. Extensive parametric studies are finally carried out in the frequency domain to find the beneficial parameters by which the maximum vibration reduction can be achieved. The key parameters investigated include the distance from the centre line of SATLCD to the rotational axis of a structure, the ratio of horizontal length to the total length of liquid column, head loss coefficient, and frequency offset ratio. The investigations demonstrate that SATLCD can provide a greater flexibility for its application in practice and achieve a high degree of vibration reduction. The sensitivity of SATLCD to the frequency offset between the damper and structure can be improved by adapting its frequency precisely to the measured structural frequency.

Seismic response control of irregular asymmetric structure with voided slabs by distributed tuned rotary mass damper devices

  • Shujin Li;Irakoze Jean Paula;Ling Mao
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.455-467
    • /
    • 2023
  • This study focuses on demonstrating the effectiveness of vibration control of tuned rotary mass damper (TRMD) for reducing the bidirectional and torsional response of the irregular asymmetric structure with voided slabs under earthquake excitations. The TRMD arranged in plane of one-story eccentric structure is proposed as a distributed tuned rotary mass damper (DTRMD) system. Lagrange's equation is used to derive the equations of motion of the controlled system. The optimum position and number of TRMD are numerically investigated under harmonic excitation and the control effects of different distributions are discussed. Furthermore, a shaking table test is conducted under different excitation cases, including free vibration, forced vibration and seismic wave to investigate the absorption performance of the device. The numerical simulations of different distributions of the TRMDs show that the DTRMDs are more effective in reduction of the displacement response of the asymmetric structure under the same mass ratio, even when the degree of eccentricity becomes large. However, with small degree of eccentricity, the unreasonable asymmetrical arrangement may cause the increase of the peak value of the rotational angular displacement. Finally, the experimental investigations exhibit similar results of translational displacement of the structure. It is concluded that the vibration of the irregular asymmetric structure can be controlled more economically and effectively by reducing the mass ratio through reducing the quantity of TRMDs at the high stiffness end.

대형저속 디젤엔진 구동 발전기의 출력변동 개선에 관한 연구 (Study on the Improvement of Output Fluctuation from Generator Driven by Large Size-Low Speed Diesel Engine)

  • 김영주;전효중;이돈출;이충기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제16권5호
    • /
    • pp.6-16
    • /
    • 1992
  • Since world-wide oil shock on 1970s, many large size-low speed diesel engines, instead of steam turbines, are used for the industrial electric power generating plants due to their economic advantage of low specific fuel consumption. But it is very important to control their electric power fluctuation problems for the purpose of smooth parallel operation with existing power plants. In this paper the fluctuation problem of KEPCO Nam-cheju No.1 generator driven by diesel ngine(B & W 7K 60MC, 13931x138.5RPM) is investigated with analysis of torsional vibration of which 4th harmonic component is related to its power fluctuation. The problem can be improved by modification of cylinder arrangement and flywheel position in reverse sequence, equalizing the combustion gas pressure of all cylinder and installation of torsional vibration damper enlarged 30%(Je=7287Kg.m$^{2}$) and high quality balancing of generator rotor.

  • PDF

Development of wind tunnel test model of mid-rise base-isolated building

  • Ohkuma, Takeshi;Yasui, Hachinori;Marukawa, Hisao
    • Wind and Structures
    • /
    • 제7권3호
    • /
    • pp.203-214
    • /
    • 2004
  • This paper describes a method for developing a multi-degree-of freedom aero-elasto-plastic model of a base-isolated mid-rise building. The horizontal stiffness of isolators is modeled by several tension springs and the vertical support is performed by air pressure from a compressor. A lead damper and a steel damper are modeled by a U-shaped lead line and an aluminum line. With this model, the frequency ratio of torsional vibration to sway vibration, and plastic displacements of isolation materials can be changed easily when needed. The results of isolation material tests and free vibration tests show that this model provides the object performance. The peak displacement factors are about 4.5 regardless of wind speed in wind tunnel tests, but their gust response factor decreases with increment of wind speed.

Numerical and experimental investigation of control performance of active mass damper system to high-rise building in use

  • Park, S.J.;Lee, J.;Jung, H.J.;Jang, D.D.;Kim, S.D.
    • Wind and Structures
    • /
    • 제12권4호
    • /
    • pp.313-332
    • /
    • 2009
  • This paper numerically and experimentally investigates the control performance of the active mass damper (AMD) systems in a 26-story high-rise building in use. This is the first full-scale application of the AMD system for suppressing the wind-induced vibration of a building structure in Korea. In addition, the AMD system was installed on top of the building already in use, which may be the world's first implementation case. In order to simultaneously mitigate the transverse-torsional coupled vibration of the building, two AMD systems were applied. Moreover, the H-infinity control algorithm has been developed to utilize the maximum capacity of the AMD system. From the results of numerical simulation using the wind load obtained from the wind tunnel tests, it was found that the maximum acceleration responses of the building were reduced significantly. Moreover, the control performance of the installed AMD system was examined by carrying out the free and forced vibration tests. The acceleration responses on top of the building in the controlled case measured under strong wind loads were compared with those in the uncontrolled case numerically simulated by using the wind load deduced from the measured data and a structural model of the building. It is demonstrated that the AMD system shows good control performance in reducing the building accelerations.

이중질량플라이휠의 개발 (Development of Dual Mass Flywheel)

  • 지태한;정재훈;송영래
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.1067-1072
    • /
    • 2003
  • Generally dual mass flywheel(DMF) is used as a solution to reduce noise and vibration of power train system and to improve the comfortability of passenger car. In this paper, design concept of new DMF model, analytical/numerical model, test procedure and tuning results are presented. Design parameters are studied by some numerical methods and tests. As the result, we can find more efficient model of DMF and reduce vibration level in power train system.

  • PDF