• Title/Summary/Keyword: torsional

Search Result 1,680, Processing Time 0.024 seconds

Prediction of Torsional Behavior for High-Rise Building Structures under Lateral Load (횡하중에 의한 고층건물의 비틀림 거동분석)

  • 서현주
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.151-160
    • /
    • 1999
  • It is recommended to have symmetric plan and elevation in structural design of hight-rise building structures to reduce torsional response of the structures. However it is not always allowed to do so due to architectural purposes. in many cases high-rise buildings are asymmetric. The purpose of this study is to predict the torsional behavior of high-rise building structures with asymmetric plan. Equivalent lateral stiffness and deformation shape factor are used for prediction of torsional response of high-rise buildings. Overall torsion of a structure is estimated by equivalent lateral stiffness and torsion of each floor is estimated by deformation factor in each 2-D lateral force resisting elements.

  • PDF

Analysis of Coupled Horizontal-Torsional Vibrations of Container Ships (콘테이너선의 수평-비틂연성진동 해석)

  • K.C.,Kim;S.J.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.1-10
    • /
    • 1986
  • A container ship, due to wide hatch openings, has characteristics of poor torsional rigidity, strong coupling of horizontal-torsional modes and significant discontinuity in the longitudinal variation of hull sections. In the mathematical formulation of the problem the hull is modeled as a beam and the transfer matrix method is utilized. The cross decks between cargo hatch opening are separated from the main hull and regarded as equivalent springs restraining torsion of hull. The effect of shear deformation of ship-side plating on torsion is taken into account in addition to St. Venant's and bending torsional rigidities. Compatibility requirements at cross section discontinuity are approximately considered. Developing the practical calculation procedure and the computer programs for application to an actual ship, some parametric studies on modeling methods of the cross deck, the compatibility condition, added-mass center etc. are out for the purpose of comparison.

  • PDF

Wind load combinations and extreme pressure distributions on low-rise buildings

  • Tamura, Yukio;Kikuchi, Hirotoshi;Hibi, Kazuki
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.279-289
    • /
    • 2000
  • The main purpose of this paper is to demonstrate the necessity of considering wind load combinations even for low-rise buildings. It first discusses the overall quasi-static wind load effects and their combinations to be considered in structural design of low-rise buildings. It was found that the maximum torsional moment closely correlates with the maximum along-wind base shear. It was also found that the instantaneous pressure distribution causing the maximum along-wind base shear was quite similar to that causing the maximum torsional moment, and that this asymmetric pressure pattern simultaneously accompanies considerable across-wind and torsional components. Secondly, the actual wind pressure distributions causing maximum quasi-static internal forces in the structural frames are conditionally sampled and their typical pressure patterns are presented.

Design and Analysis of Kart Chassis Frame for Bending and Torsional Stiffness (굽힘과 비틀림 강성을 갖는 카트 섀시 프레임의 설계와 해석)

  • 장성국;강신하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.226-231
    • /
    • 2003
  • There have been many attempts to make kart chassis domestically to lower the price of complete kart. However nobody made a successful chassis due to the lack of understanding the characteristics of kart chassis frame. In this work, a baseline chassis frame under the bending and torsional load is studied. Design target is that the baseline chassis frame is quite adequate not only for the beginners but also for the beginning racers. Results from the analysis are used as a guide to design or modify the baseline chassis with the goal of proper torsional stiffness. Minimum increase in weight is being forced. As a result, the baseline chassis frame was designed, made, and tested. Based on the design results, complete karts are being manufactured by the small 1 size domestic company and these karts are being sold and run in the market.

$I_c$ Degradation Behavior in YBCO Coated Conductors under Torsional Strain (YBCO 박막도체의 비틀림 변형률에 따른 임계전류 열화거동)

  • Shin, Hyung-Seop;Dizon, John Ryan C;Kim, Tae-Young;Ko, Rock-Kil;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.93-94
    • /
    • 2006
  • The $I_c$ degradation behavior of YBCO CC tapes due to torsional deformation has been investigated. Particularly, the influence of torsion angle on the $I_c$ in HTS tapes was examined at 77K (self-field). At low torsional angles or shear strains, the $I_c$ degradation was small and gradual. Also, a good consistency of the $I_c$ degradation behaviors was found along the longitudinal direction under torsion when multiple voltage terminals were adopted for investigating the homogeneity of the $I_c$ degradation.

  • PDF

A Study on the Stiffness Design for a Steel Spring Torsional Vibration Damper (강판 스프링형 비틀림 진동댐퍼의 강성설계 연구)

  • Lee, D.H.;Chung, T.Y.;Kim, Y.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.996-1002
    • /
    • 2013
  • Conditions of stiffness for a steel spring torsional vibration damper are difficult and ambiguous. Nevertheless correct estimation of stiffness is essential and important in the damper design for the damper to activate properly in the field. In this paper, to build up the estimation method of steel spring torsional vibration damper a miniaturized model was developed for modelling between a spring and inner star of the damper. The method obtained from the results through the experiment and analysis of it was applied to the prototype torsional damper.

A Study of Improvement on the Torsional Vibration of Input Shaft and Structural Vibration of Vehicle Using Tunable Dual Stiffness Type Clutch in Auto-transmission (자동변속기에서 2중 동조 강성형 클러치를 이용한 입력축의 비틀림 진동 및 차체 진동의 개선에 관한 연구)

  • Jung, Byung-Hwan;Hwang, Seon-Yang;Kang, Koo-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.883-890
    • /
    • 2010
  • According to torsional vibration characteristic of a tunable dual stiffness type clutch(TDSTC) in auto-transmission, the input shaft system have occurred breakdown for the duration cycle and over-vibration happened on vehicle at specific condition. This paper introduces the improvement of the torsional vibration of input shaft and the vehicle vibration by tuning of the TDSTC.

Seismic energy dissipation in torsionally responding building systems

  • Correnza, J.C.;Hutchinson, G.L.;Chandler, A.M.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.255-272
    • /
    • 1995
  • The paper considers aspects of the energy dissipation response of selected realistic forms of torsionally balanced and torsionally unbalanced building systems, responding to an ensemble of strong-motion earthquake records. Focus is placed on the proportion of the input seismic energy which is dissipated hysteretically, and the distribution of this energy amongst the various lateral load-resisting structural elements. Systems considered comprise those in which torsional effects are discounted in the design, and systems designed for torsion by typical code-defined procedures as incorporated in the New Zealand seismic standard. It is concluded that torsional response has a fundamentally significant influence on the energy dissipation demand of the critical edge elements, and that therefore the allocation of appropriate levels of yielding strength to these elements is a paramount design consideration. Finally, it is suggested that energy-based response parameters be developed in order to assist evaluations of the effectiveness of code torsional provisions in controlling damage to key structural elements in severe earthquakes.

Equivalent lateral force method for buildings with setback: adequacy in elastic range

  • Roy, Rana;Mahato, Somen
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.685-710
    • /
    • 2013
  • Static torsional provisions employing equivalent lateral force method (ELF) require that the earthquake-induced lateral force at each story be applied at a distance equal to design eccentricity ($e_d$) from a reference resistance centre of the corresponding story. Such code torsional provisions, albeit not explicitly stated, are generally believed to be applicable to the regularly asymmetric buildings. Examined herein is the applicability of such code-torsional provisions to buildings with set-back using rigid as well as flexible diaphragm model. Response of a number of set-back systems computed through ELF with static torsional provisions is compared to that by response spectrum based procedure. Influence of infill wall with a range of opening is also investigated. Results of comprehensive parametric studies suggest that the ELF may, with rational engineering judgment, be used for practical purposes taking some care of the surroundings of the setback for stiff systems in particular.

The Study on the Added Moment of Inertia of Two Dimensional Cylinder induced by the Torsional Vibration coupled with the Flexural Vibration (자유수면(自由水面)에서의 비틀림 수평(水平)굽힘의 연성진동(連成振動)을 하는 선체단면형(船體斷面形)의 이차원적(二次元的) 부가관성(附加慣性) Moment에 관(關)한 연구(硏究))

  • S.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.7 no.2
    • /
    • pp.3-18
    • /
    • 1970
  • An investigation was made for the added mass moment of inertia induced by the rotational motion of the cylinder with hull section on water in order to obtain the information to estimate the natural frequency of the torsional vibration of ships. The special consideration to the effect of the draught upon the added mass moment of inertia is taken into account in the study. In this paper, the general expression for the added mass coefficients of moment of inertia of arbitary two dimensional forms induced by the torsional vibration, was derived by the author. Hence, the coefficients for these forms are represented as functions of parameters, the section area coefficient and draft beam ratio, from which the added mass coefficients for arbitrary forms can be obtained. The result was shown in a chart for estimation of the added mass moment of inertia induced by the torsional vibration, as first trial, for the convenience of practical use.

  • PDF