• Title/Summary/Keyword: torsional

Search Result 1,680, Processing Time 0.02 seconds

Improvement of Dynamic Characteristics of Torsion on the Marine Propulsion Shafting System with Elastic Rubber Coupling (고무 탄성커플링을 갖는 선박 추진축계 비틀림의 동특성 개선)

  • Lee, D.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.923-929
    • /
    • 2003
  • As for the marine propulsion shafting system using 4 stroke diesel engine, it is common to apply a reduction gear box between diesel engine and shafting to increase propulsion efficiency, which requires inevitably a certain elastic coupling to avoid chattering and hammering inside of gear box. In this study, the optimum method of rectifying propulsion shafting system in case of 750 ton fishing vessel is theoretically studied in a view of dynamic characteristics of torsion. After the replacement of diesel engine and gear box, the torsional vibration get worse and so some countermeasures are needed. The elastic coupling is modified from a present rubber coupling of block type having relatively high torsional stiffness to a rubber coupling haying two serially connected elements. Torsional vibration damper was installed at crankshaft free end additionally and moment of inertia of flywheel was adjusted. The dynamic characteristics of shafting system was improved by these modification. The theoretical analysis of torsional vibration are compared to measurement results using two laser torsion meters during the sea trial.

A Study on the Coupled Shaft-torsional and Blade-bending Vibrations in the Flexible Rotor-coupling-blade System (유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구)

  • Oh, Byung-Young;Lee, Sun-Sook;Yoon, Hyungwon;Cha, Seog-Ju;Na, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1023-1029
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system was developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility was lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations was employed for developing the equation of the motion. The Assumed Modes Method was used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearity, stiffness hardening and softening.

Effect of Prior Structure on Torsional Fatigue Strength of Induction Surface Hardened Medium Carbon Steel (고주파 표면경화된 중탄소강의 비틀림 피로강도에 미치는 초기조직의 영향)

  • Kim, Heung-Jip;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.247-257
    • /
    • 1998
  • In order to evaluate the relation between prior structure and fatigue strength on a induction surface hardened medium carbon steel(SAE1050M) for automotive drive shafts, torsional fatigue test were conducted with various cases of different hardened depths and applied loads. Prior structures of the steel such as pearlite, fine pearlite and spheroidal pearlite were prepared by conventional nomalizing, tempering after quenching and spheroidized annealing, respectively. Maximum torsional fatigue strength can be obtained when the case depth is 18~25% diameter of the bar in each prior structure. The effect of case depth on the torsional fatigue strength was different depending on applied load to specimen, but the most good fatigue life was shown in the case of pearlitic structure when the case depth was 4.0~5.5mm(18~25% of bar diameter). Among three different prior structures, energy consumption, to obtain high strength or to get the same case depth, was the most saved in the case of pearlitic structure.

  • PDF

Distortional buckling of I-steel concrete composite beams in negative moment area

  • Zhou, Wangbao;Li, Shujin;Huang, Zhi;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.57-70
    • /
    • 2016
  • The predominant type of buckling that I-steel concrete composite beams experience in the negative moment area is distortional buckling. The key factors that affect distortional buckling are the torsional and lateral restraints by the bottom flange. This study thoroughly investigates the equivalent lateral and torsional restraint stiffnesses of the bottom flange of an I-steel concrete composite beam under negative moments. The results show a coupling effect between the applied forces and the lateral and torsional restraint stiffnesses of the bottom flange. A formula is proposed to calculate the critical buckling stress of the I-steel concrete composite beams under negative moments by considering the lateral and torsional restraint stiffnesses of the bottom flange. The proposed method is shown to better predict the critical bending moment of the I-steel composite beams. This article introduces an improved method to calculate the elastic foundation beams, which takes into account the lateral and torsional restraint stiffnesses of the bottom flange and considers the coupling effect between them. The results show a close match in results from the calculation method proposed in this paper and the ANSYS finite element method, which validates the proposed calculation method. The proposed calculation method provides a theoretical basis for further research on distortional buckling and the ultimate resistance of I-steel concrete composite beams under a variable axial force.

Potational Viscous Damping of On-substrate Micromirrors (기판에 인접한 미소거울의 회전 점성감쇠)

  • Kim, Eung-Sam;Han, Ki-Ho;Cho, Young-Ho;Kim, Moon-Uhn
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.243-248
    • /
    • 2001
  • In this paper, we present theoretical and experimental study on the viscous damping of the on-substrate torsional micromirrors, oscillating near the silicon substrates. In this theoretical study, we develop theoretical models and test structures for the viscous damping of the on-substrate torsional micromirrors. From a finite element analysis, we estimate the theoretical damping coefficients of the torsional micromirrors. From a finite element analysis, we estimate the theoretical damping coefficients of the torsional micromirrors, fabricated by the surface-micromaching process. From the electrostatic test of the fabricated devices, frequency-dependent rotationalvelocity of the micromirrors has been measured at the atmospheric pressure using devices, frequency-dependent rotational velocity of the micromirrors has been measured at the atmospheric pressure using the Mach-Zehnder interferometer system. Experimental damping coefficients have been extracted from the least square fit of the measured rotational velocity within the filter bandwidth of 150 kHz. We have compared the theoretical values and the experimental results on the dynamic performance of the micromirrors. The theoretical analysis overstimates the resonant frequency in the amount of 15%, while underestimating the viscous damping in the factors of 10%.

  • PDF

Study on Torsional Strength of Reinforced Concrete Members (철근콘크리트 부재의 비틀림강도에 관한 연구)

  • Park, Chang-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.145-150
    • /
    • 2019
  • This paper proposes a model for the calculation of the ultimate torsional strength in normal-strength and high-strength concrete beams which include the concrete contribution strength and use a reasonable thickness of shear flow. The adequacy of the proposed model is evaluated by comparing the calculated torsional strength with the experimentally observed results from 104 test specimens reported in the literature. The results are also compared with the calculations of the KCI and the ACI building code equations, and those of other model which include the concrete contribution strength. The comparisons show that the ultimate torsional strengths calculated by the proposed equation and Rahal's equation are closer to the experimentally observed results than those calculated by the code equations.

Effective torsional stiffness of reinforced concrete structural walls

  • Luo, Da;Ning, Chaolie;Li, Bing
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.119-127
    • /
    • 2019
  • When a structural wall is subjected to multi-directional ground motion, torsion-induced cracks degrade the stiffness of the wall. The effect of torsion should not be neglected. As a main lateral load resisting member, reinforced concrete (RC) structural wall has been widely studied under the combined action of bending and shear. Unfortunately, its seismic behavior under a combined action of torsion, bending and shear is rarely studied. In this study, torsional performances of the RC structural walls under the combined action is assessed from a comprehensive parametrical study. Finite element (FE) models are built and calibrated by comparing with the available experimental data. The study is then carried out to find out the critical design parameter affecting the torsional stiffness of RC structural walls, including the axial load ratio, aspect ratio, leg-thickness ratio, eccentricity of lateral force, longitudinal reinforcement ratio and transverse reinforcement ratio. Besides, to facilitate the application in practice, an empirical equation is developed to estimate the torsional stiffness of RC rectangular structural walls conveniently, which is found to agree well with the numerical results of the developed FE models.

PSO based neural network to predict torsional strength of FRP strengthened RC beams

  • Narayana, Harish;Janardhan, Prashanth
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.635-642
    • /
    • 2021
  • In this paper, soft learning techniques are used to predict the ultimate torsional capacity of Reinforced Concrete beams strengthened with Fiber Reinforced Polymer. Soft computing techniques, namely Artificial Neural Network, trained by various back propagation algorithms, and Particle Swarm Optimization (PSO) algorithm, have been used to model and predict the torsional strength of Reinforced Concrete beams strengthened with Fiber Reinforced Polymer. The performance of each model has been evaluated by using statistical parameters such as coefficient of determination (R2), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The hybrid PSO NN model resulted in an R2 of 0.9292 with an RMSE of 5.35 for training and an R2 of 0.9328 with an RMSE of 4.57 for testing. Another model, ANN BP, produced an R2 of 0.9125 with an RMSE of 6.17 for training and an R2 of 0.8951 with an RMSE of 5.79 for testing. The results of the PSO NN model were in close agreement with the experimental values. Thus, the PSO NN model can be used to predict the ultimate torsional capacity of RC beams strengthened with FRP with greater acceptable accuracy.

Torsional Strength of CFRP Material for Application of Ship Shaft System (CFRP 소재의 선박용 축계 적용을 위한 비틀림강도 특성)

  • Kim, Min-kyu;Shin, Ick-gy;Kim, Seon Jin;Park, Dae Kyeom;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.431-439
    • /
    • 2021
  • The Carbon Fiber Reinforced Plastic (CFRP) material is recently widely used in the composite industry with excellent rigidity and lightweight properties. A ship shaft system requires high standards of safety on torsional strength capacity. The purpose of this study is to verify the applicability of a CFRP shaft system to take the place of metal shaft systems for ships from a viewpoint of torsional strength. Selection of materials and manufacturing method are executed then two geometrically scaled CFRP shaft system models were designed and manufactured with three-layer patterns. The models were used for a series of torsion tests under single and repeated torsional loading conditions. Detailed design and manufacturing methods for a CFRP ship shaft system are documented and the torsion test results are listed in this paper. The results of this study could be useful guidelines on the development of CFRP ship shaft systems and a test method.

Behavior of recycled steel fiber-reinforced concrete beams in torsion- experimental and numerical approaches

  • Mohammad Rezaie Oshtolagh;Masood Farzam;Nima Kian;Hamed Sadaghian
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.173-184
    • /
    • 2023
  • In this study, mechanical, flexural post-cracking, and torsional behaviors of recycled steel fiber-reinforced concrete (RSFRC) incorporating steel fibers obtained from recycling of waste tires were investigated. Initially, three concrete mixes with different fiber contents (0, 40, and 80 kg/m3) were designed and tested in fresh and hardened states. Subsequently, the flexural post-cracking behaviors of RSFRCs were assessed by conducting three-point bending tests on notched beams. It was observed that recycled steel fibers improve the post-cracking flexural behavior in terms of energy absorption, ductility, and residual flexural strength. What's more, torsional behaviors of four RSFRC concrete beams with varying reinforcement configurations were investigated. The results indicated that RSFRCs exhibited an improved post-elastic torsional behaviors, both in terms of the torsional capacity and ductility of the beams. Additionally, numerical analyses were performed to capture the behaviors of RSFRCs in flexure and torsion. At first, inverse analyses were carried out on the results of the three-point bending tests to determine the tensile functions of RSFRC specimens. Additionally, the applicability of the obtained RSFRC tensile functions was verified by comparing the results of the conducted experiments to their numerical counterparts. Finally, it is noteworthy that, despite the scatter (i.e., non-uniqueness) in the aspect ratio of recycled steel fiber (as opposed to industrial steel fiber), their inclusion contributed to the improvement of post-cracking flexural and torsional capacities.