DOI QR코드

DOI QR Code

Study on Torsional Strength of Reinforced Concrete Members

철근콘크리트 부재의 비틀림강도에 관한 연구

  • Park, Chang-Kyu (Department of Civill Engineering, Kunsan National University)
  • 박창규 (군산대학교 토목공학과)
  • Received : 2019.04.25
  • Accepted : 2019.05.30
  • Published : 2019.06.30

Abstract

This paper proposes a model for the calculation of the ultimate torsional strength in normal-strength and high-strength concrete beams which include the concrete contribution strength and use a reasonable thickness of shear flow. The adequacy of the proposed model is evaluated by comparing the calculated torsional strength with the experimentally observed results from 104 test specimens reported in the literature. The results are also compared with the calculations of the KCI and the ACI building code equations, and those of other model which include the concrete contribution strength. The comparisons show that the ultimate torsional strengths calculated by the proposed equation and Rahal's equation are closer to the experimentally observed results than those calculated by the code equations.

본 논문에서는 비틀림을 받는 RC 부재의 콘크리트 기여 강도를 포함하고 전단흐름두께를 합리적으로 고려한 비틀림 강도 추정식을 제안하였다. 본 논문에서 제안한 극한비틀림 강도 추정식을 검증하기 위하여, 현행 콘크리트 구조기준(KCI 2017, ACI 318-14)에서 규정한 공칭비틀림강도와 Rahal의 비틀림강도 추정식, 본 논문에서 제시한 새로운 비틀림강도 추정식에 의한 이론값을 참고 문헌에서 발췌한 104개의 보에 대한 극한비틀림강도 측정값과 각각 비교 검토하였다. 그 결과 콘크리트 기여강도를 반영한 Rahal의 비틀림강도 추정식과 본 논문에서 제안한 비틀림강도 추정식에 의한 극한비틀림강도가 현행 설계기준이 규정한 공칭비틀림강도보다 실험값에 더 가깝게 나타났다.

Keywords

GSJHDK_2019_v7n2_145_f0001.png 이미지

Fig. 1. Torsional strength and compressive strength of concrete

Table 1. Experimental test results

GSJHDK_2019_v7n2_145_t0001.png 이미지

Table 2. Effects of concrete strength on ultimate torsional strength

GSJHDK_2019_v7n2_145_t0002.png 이미지

Table 3a. Comparison of torsional strengths and test results

GSJHDK_2019_v7n2_145_t0003.png 이미지

Table 3b. Comparison of torsional strengths and test results

GSJHDK_2019_v7n2_145_t0004.png 이미지

References

  1. ACI Committee 318. (1971). Building Code Requirements for Reinforced Concrete (ACI 318-71), American Concrete Institute, Detroit, MI, 78.
  2. ACI Committee 318. (2014). Building Code Requirements for Structural Concrete (ACI 318-14). American Concrete Institute, Detroit, MI, 519.
  3. Bernardo, L.F.A., Lopes, S.M.R. (2013). Plastic analysis and twist capacity of high-strength concrete hollow beams under pure torsion, Engineering Structures, 49, 190-201. https://doi.org/10.1016/j.engstruct.2012.10.030
  4. CEB-FIP. (1978). Model Code for Concrete Structures, CEB-FIP International Recommendations, 3rd edn, Comite Euro-International du Beton (CEB), 348.
  5. Chiu, H.J., Fang, I.K., Young, W.T., Shiau, J.K. (2007). Behavior of reinforced concrete beams with minimum torsional reinforcement, Engineering Structures, 29, 2193-2205. https://doi.org/10.1016/j.engstruct.2006.11.004
  6. Fang, I.K., Shiau, J.K. (2004). Torsional behavior of normal- and high-strength concrete beams, ACI Structural Journal, 101(3), 304-313.
  7. German Standard DIN 4334. (1958). Design of Reinforced Concrete, Ernst & Sohn, Berlin, Germany, 57.
  8. Hsu, T.T.C. (1968a). Torsion of Structural Concrete - Behavior of Reinforced Concrete Rectangular Members, Torsion of Structural Concrete, Special Publication SP-18, American Concrete Institute, Detroit, MI, 261-306.
  9. Hsu, T.T.C. (1968b). Ultimate torque of reinforced rectangular beams, Journal of the Structural Division, ASCE, 94(ST2), 485-510. https://doi.org/10.1061/JSDEAG.0001886
  10. Hsu, T.T.C. (1984). Torsion of Reinforced Concrete, Van Nostrand Reinhold Company Inc., 516.
  11. Hsu, T.T.C., Mo, Y.L. (1983). Softening of Concrete in Torsional Members, Research Report No. ST-TH-001-83, Department of Civil Engineering, University of Houston, Houston, Texas, 107.
  12. Hsu, T.T.C., Mo, Y.L. (2010). Unified Theory of Concrete Structures. A John Wiley and Sons, Ltd, Publication.
  13. KCI Model Code 2017. (2017). Concrete Structure Institute Standards 2017, Korea Concrete Institute [in Korean].
  14. Kim, E.K. (1987). Strength and Deformation Characteristics of Reinforced Concrete Members in Pure Torsion, Ph.D Thesis, Sungkyunkwan University [in Korean].
  15. Kim, J.S., Seo, H.S., Lim, J.H., Kwon, M.H. (2018). Experimental study on torsional behavior of RC beams with high strength stirrup, Journal of the Korea Concrete Institute, 30(1), 39-46 [in Korean]. https://doi.org/10.4334/JKCI.2018.30.1.039
  16. Koutchoukali, N.E., Belarbi, A. (2001). Torsion of high-strength reinforced concrete beams and minimum reinforcement requirement, ACI Structural Journal, 98(4), 462-469.
  17. Lampert, P., Thurliman, B. (1968). Torsion Tests of Reinforced Concrete Beams, Bericht 6506-2, Institute of Baustatik, ETH, Zurich, Switzerland, 101.
  18. Lee, J.Y., Kim, S.W., Kim, J.H. (2008). Torsional strength and failure modes of reinforced concrete beams subjected to pure torsion, Journal of the Korea Concrete Institute, 20(4), 503-511 [in Korean]. https://doi.org/10.4334/JKCI.2008.20.4.503
  19. Rahal, K.N. (2013). Torsional strength of normal and high strength reinforced concrete beams, Engineering Structures, 56, 2206-2216. https://doi.org/10.1016/j.engstruct.2013.09.005
  20. Rasmussen, L.J, Baker, G. (1995). Torsion in reinforced normal and high-strength concrete beams-part 1: experimental test series, ACI Structural Journal, 92(1), 56-62.
  21. Rausch, E. (1929). Design of Reinforced Concrete in Torsion, Technische Hochschule, Berlin, Germany, 53.
  22. Yoon, S.K., Lee, S.C., Lee, D.H., Lee, J.Y. (2014). Failure modes of RC beams with high strength reinforcement, Journal of the Korea Concrete Institute, 26(2), 143-150 [in Korean]. https://doi.org/10.4334/JKCI.2014.26.2.143