• 제목/요약/키워드: torsion theory

검색결과 130건 처리시간 0.025초

Analysis of torsional-bending FGM beam by 3D Saint-Venant refined beam theory

  • Guendouz, Ilies;Khebizi, Mourad;Guenfoud, Hamza;Guenfoud, Mohamed;El Fatmi, Rached
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.423-435
    • /
    • 2022
  • In this article, we present torsion-bending analysis of a composite FGM beam with an open section, according to the advanced and refined theory of 1D / 3D beams based on the 3D Saint-Venant's solution and taking into account the edge effects. The (initially one-dimensional) model contains a set of three-dimensional (3D) displacement modes of the cross section, reflecting its 3D mechanical behaviour. The modes are taken into account depending on the mechanical characteristics and the geometrical form of the cross-section of the composite FGM beam. The model considered is implemented on the CSB (Cross-Section and Beam Analysis) software package. It is based on the RBT/SV theory (Refined Beam Theory on Saint-Venant principle) of FGM beams. The mechanical and physical characteristics of the FGM beam continuously vary, depending on a power-law distribution, across the thickness of the beam. We compare the numerical results obtained by the three-beam theories, namely: The Classical Beam Theory of Saint-Venant (Classical Beam Theory CBT), the theory of refined beams (Refined Beam Theory RBT), and the theory of refined beams, using the higher (high) modes of distortion of the cross-section (Refined Beam Theory using distorted modes RBTd). The results obtained confirm a clear difference between those obtained by the three models at the level of the supports. Further from the support, the results of RBT and RBTd are of the same order, whereas those of CBT remains far from those of higher-order theories. The 3D stresses, strains and displacements, obtained by the present study, reflect the 3D behaviour of FGM beams well, despite the initially 1D nature of the problem. A validation example also shows a very good agreement of the proposed models with other models (classical or higher-order beam theory) and Carrera Unified Formulation 1D-beam model with Lagrange Expansion functions (CUF-LE).

Torsional analysis for multiple box cells using softened truss model

  • Yang, Daili;Fu, Chung C.
    • Structural Engineering and Mechanics
    • /
    • 제5권1호
    • /
    • pp.21-32
    • /
    • 1997
  • A new torsional analysis method for multiple cell box based on the Softened Truss Model Theory was developed. This softened truss model unifies shear and torsion to address the problem associated with a torque applied on a box. The model should be very useful for the analysis of a reinforced concrete box under torque, especially for the bridge superstructure with multiple cell box sections.

실리콘 나노튜브 구조의 원자단위 시뮬레이션

  • 이준하;이흥주;이주율
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2004년도 춘계학술대회 발표 논문집
    • /
    • pp.63-66
    • /
    • 2004
  • The responses of hypothetical silicon nanotubes under torsion have been investigated using an atomistic simulation based on the Tersoff potential. A torque, proportional to the deformation within Hooke's law, resulted in the ribbon-like flattened shapes and eventually led to a breaking of hypothetical silicon nanotubes. Each shape change of hypothetical silicon nanotubes corresponded to an abrupt energy change and a singularity in the strain energy curve as a function of the external tangential force, torque, or twisted angle. The dynamics of silicon nanotubes under torsion can be modelled in the continuum elasticity theory.

  • PDF

Theory of Thin-Walled, Pretwisted Composite Beams with Elastic Couplings

  • Jung, Sung-Nam;Kim, Chang-Joo;Ko, Jin-Hwan;Kim, Chang-Wan
    • Advanced Composite Materials
    • /
    • 제18권2호
    • /
    • pp.105-119
    • /
    • 2009
  • In this work, the structural response of thin-walled composite beams with pretwist angle is investigated by using a mixed beam approach that combines the stiffness and flexibility methods in a unified manner. The Reissner's semi-complimentary energy functional is used to derive the stiffness matrix that approximates the beam in an Euler-Bernoulli level for extension and bending and Vlasov level for torsion. The bending and torsion-related warpings induced by the pretwist effects are derived in a closed form. The developed theory is validated with available literature and detailed finite element structural analysis results using the MSC/NASTRAN. Pretwisted composite beams with rectangular solid and thin-walled box sections are illustrated to validate the current approach. Acceptable correlation has been achieved for cases considered in this study. The effects of pretwist and fiber orientation angles on the static behavior of pretwisted composite beams are also studied.

BRILL-NOETHER THEORY FOR RANK 1 TORSION FREE SHEAVES ON SINGULAR PROJECTIVE CURVES

  • Ballico, E.
    • 대한수학회지
    • /
    • 제37권3호
    • /
    • pp.359-369
    • /
    • 2000
  • Let X be an integral Gorenstein projective curve with g:=pa(X) $\geq$ 3. Call $G^r_d$ (X,**) the set of all pairs (L,V) with L$\epsilon$Pic(X), deg(L) = d, V $\subseteq$ H^0$(X,L), dim(V) =r+1 and V spanning L. Assume the existence of integers d, r with 1 $\leq$ r$\leq$ d $\leq$ g-1 such that there exists an irreducible component, , of $G^r_d$(X,**) with dim($\Gamma$) $\geq$ d - 2r and such that the general L$\geq$$\Gamma$ is spanned at every point of Sing(X). Here we prove that dim( ) = d-2r and X is hyperelliptic.

  • PDF

ANNIHILATOR CONDITIONS ON RINGS AND NEAR-RINGS

  • Cho, Yong-Uk
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권3호
    • /
    • pp.177-183
    • /
    • 2003
  • In this paper, we initiate the study of some annihilator conditions on polynomials which were used by Kaplansky [Rings of operators. W. A. Benjamin, Inc., New York, 1968] to abstract the algebra of bounded linear operators on a Hilbert spaces with Baer condition. On the other hand, p.p.-rings were introduced by Hattori [A foundation of torsion theory for modules over general rings. Nagoya Math. J. 17 (1960) 147-158] to study the torsion theory. The purpose of this paper is to introduce the near-rings with Baer condition and near-rings with p.p. condition which are somewhat different from ring case, and to extend a results of Armendariz [A note on extensions of Baer and P.P.-rings. J. Austral. Math. Soc. 18 (1974), 470-473] and Jøndrup [p.p. rings and finitely generated flat ideals. Proc. Amer. Math. Soc. 28 (1971) 431-435].

  • PDF

Aeroelastic deformation and load reduction of bending-torsion coupled wind turbine blades

  • Shaojun, Du;Jingwei, Zhou;Fengming, Li
    • Wind and Structures
    • /
    • 제35권5호
    • /
    • pp.353-368
    • /
    • 2022
  • Wind turbine blades are adjusted in real-time according to the wind conditions and blade deformations to improve power generation efficiency. It is necessary to predict and reduce the aeroelastic deformations of wind turbine blades. In this paper, the equivalent model of the blade is established by the finite element method (FEM), and the aerodynamic load of the blade is evaluated based on the blade element momentum (BEM) theory. The aeroelastic coupling model is established, in which the bending-torsion coupling effect of the blade is taken into account. The steady and dynamic aeroelastic deformations are calculated. The influences of the blade section's shear centre position and the blade's sweepback design on the deformations are analyzed. The novel approaches of reducing the twist angle of the blade by changing the shear centre position and sweepback of the blade are presented and proven to be feasible.

Exact solution for free vibration of curved beams with variable curvature and torsion

  • Zhu, Li-Li;Zhao, Ying-Hua;Wang, Guang-Xin
    • Structural Engineering and Mechanics
    • /
    • 제47권3호
    • /
    • pp.345-359
    • /
    • 2013
  • For the purpose of investigating the free vibration response of the spatial curved beams, the governing equations are derived in matrix formats, considering the variable curvature and torsion. The theory includes all the effects of rotary inertia, shear and axial deformations. Frobenius' scheme and the dynamic stiffness method are then applied to solve these equations. A computer program is coded in Mathematica according to the proposed method. As a special case, the dynamic stiffness and further the natural frequencies of a cylindrical helical spring under fixed-fixed boundary condition are carried out. Comparison of the present results with the FEM results using body elements in I-DEAS shows good accuracy in computation and validity of the model. Further, the present model is used for reciprocal spiral rods with different boundary conditions, and the comparison with FEM results shows that only a limited number of terms in the resultant provide a relatively accurate solution.

가상의 단일벽 실리콘 나노튜브의 비틀림 (Torsion of Hypothetical Single-Wall Silicon Nanotubes)

  • 변기량;강정원;이준하;권오근;황호정
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1165-1174
    • /
    • 2003
  • The responses of hypothetical silicon nanotubes under torsion have been investigated using an atomistic simulation based on the Tersoff potential. A torque, proportional to the deformation within Hooke's law, resulted in the ribbon-like flattened shapes and eventually led to a breaking of hypothetical silicon nanotubes. Each shape change of hypothetical silicon nanotubcs corresponded to an abrupt energy change and a singularity in the strain energy curve as a function of the external tangential force, torque, or twisted angle. The dynamics o silicon nanotubes under torsion can be modelled in the continuum elasticity theory.