• Title/Summary/Keyword: torsion moment

Search Result 90, Processing Time 0.033 seconds

Delamination analysis of inhomogeneous viscoelastic beam of rectangular section subjected to torsion

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.69-81
    • /
    • 2023
  • This paper considers a delamination analysis of a statically undetermined inhomogeneous beam structure of rectangular section with viscoelastic behavior under torsion. The beam is built in at its two ends. The beam has two longitudinal inhomogeneous layers with a delamination crack between them. A notch is made in the upper crack arm. The external torsion moment applied on the beam is a function of time. Under these conditions, the beam has one degree of indeterminacy. In order to derive the strain energy release rate, first, the static indeterminacy is resolved. Then the strain energy release rate is obtained by analyzing the balance of the energy with considering the viscoelastic behavior. The strain energy release rate is found also by analyzing the compliance of the beam for checkup. Solution of the strain energy release rate in a beam without a notch in the upper crack arm is derived too. In this case, the beam has two degrees of static indeterminacy (the torsion moment in the upper crack arm is treated as an additional internal redundant unknown). A parametric investigation of the strain energy release rate is carried-out.

Seismic behavior of reinforced concrete T-shaped columns under compression-bending-shear and torsion

  • Ping, Chen Zong;Weiwei, Su;Yang, Yang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.431-444
    • /
    • 2021
  • T-shaped column is usually used as side column in buildings, which is one of the weak members in structural system. This paper presented a quasi-static cyclic loading experiment of six specimens of reinforced concrete (RC) T-shaped columns under compression-flexure-shear-torsion combined loadings to investigate the effect in the ratio of torsion to moment (T/M) and axial compression ratio (n) and height-thickness ratio of flange plate (φ) on their seismic performance. Based on the test results, the failure characteristics, hysteretic curves, ductility, energy dissipation, stiffness degradation and strength degradation were analyzed. The results show that the failure characteristics of RC T-shaped columns mainly depend on the ratio of torsion to moment, which can be divided into bending failure, bending-torsion failure and shear-torsion failure. With the increase of T/M ratio, the torsion ductility coefficient increased, and in a suitable range, the torsion and horizontal displacement ductility coefficient of RC T-shaped columns could be effectively improved with the increase of axial compression ratio and the decrease of height-thickness ratio of flange plate. Besides, the energy dissipation capacity of the specimens mainly depended on the bending and shear energy dissipation capacity. On the other hand, the increase of axial compression ratio and the ratio of torsion to moment could accelerate the torsional and bending stiffness degradation of RC T-shaped columns. Moreover, the degradation coefficient of torsion strength was between 0.80 and 0.98, and that of bending strength was between 0.75 and 1.00.

Estimation of elastic seismic demands in TU structures using interactive relations between shear and torsion

  • Abegaz, Ruth A.;Lee, Han Seon
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.59-77
    • /
    • 2020
  • The code static eccentricity model for elastic torsional design of structures has two critical shortcomings: (1) the negation of the inertial torsional moment at the center of mass (CM), particularly for torsionally-unbalanced (TU) building structures, and (2) the confusion caused by the discrepancy in the definition of the design eccentricity in codes and the resistance eccentricity commonly used by engineers such as in FEMA454. To overcome these shortcomings, using the resistance eccentricity model that can accommodate the inertial torsional moment at the CM, interactive relations between shear and torsion are proposed as follows: (1) elastic responses of structures at instants of peak edge-frame drifts are given as functions of resistance eccentricity, and (2) elastic hysteretic relationships between shear and torsion in forces and deformations are bounded by ellipsoids constructed using two adjacent dominant modes. Comparison of demands estimated using these two interactive relations with those from shake-table tests of two TU building structures (a 1:5-scale five-story reinforced concrete (RC) building model and a 1:12-scale 17-story RC building model) under the service level earthquake (SLE) show that these relations match experimental results of models reasonably well. Concepts proposed in this study enable engineers to not only visualize the overall picture of torsional behavior including the relationship between shear and torsion with the range of forces and deformations, but also pinpoint easily the information about critical responses of structures such as the maximum edge-frame drifts and the corresponding shear force and torsion moment with the eccentricity.

Torsional Analysis of RC Beam Considering Tensile Stiffening of Concrete (콘크리트의 인장강성을 고려한 RC보의 비틀림 해석)

  • 박창규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.167-172
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of Present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

  • PDF

Torsional Analysis of RC Beam Using Average Strains (평균변형률을 이용한 RC보의 비틀림 해석)

  • Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

Torsional moment of orthodontic wires (교정용 와이어의 비틀림 모멘트)

  • Choy, Kwangchul;Kim, Kyung-Ho;Park, Young-Chel;Kang, Chang-Soo
    • The korean journal of orthodontics
    • /
    • v.30 no.4 s.81
    • /
    • pp.467-473
    • /
    • 2000
  • As a rectangular wire Is inserted into edgewise brackets the wire exerts a force system three-dimensionally. The force system may include bending force in first and second orders and a torsional force in third order Analytical and experimental studies on bending force have been Introduced, but information about torsion is still lack. The purpose of this study was to estimate the torsional moment in the force system of rectangular arch wires through theoretical and experimental studies. Wires most frequently used for third order control were selected as study materials. Cross sections of 0.016x0.022, 0.017x0.025, 0.019x0.025 inch rectangular wires in foot different materials such as stainless steel(Ormco), TMA(Ormco), NiTi(Ormco), and braided stainless steel (DentaFlex, Dentaurum) were used. The torque/twist rate of each test material was calculated using the torsion formula. Torque/twist rate, yield torsional moment, and ultimate torsional moment were measured with a torque gauge. The torsion formula assesses that the torque/twist rate (T/$\theta$) is proportional to the characteristics of material (G) and cross section (J), and is inversely proportional to the length of wire (L). Most experimental results corresponded with the formula. The relative stiffness was calculated for reference to a logical sequence of wire changes.

  • PDF

A Study on Structural Design of Torsion Beam Rear Suspension (토션빔 후륜 현가장치의 구조설계에 관한 연구)

  • Kang Juseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.146-153
    • /
    • 2005
  • Structural design of the torsion beam rear suspension is investigated by calculating warping of the torsion beam. Since the longitudinal displacement in the cross section of the torsion beam due to torsional moment causes normal stress across the beam restrained from outside at both ends, the profile of torsion beam needs to be designed considering the warping. Warping function of the beam is derived with the parameters of cross section fur the arbitrary shapes of torsion beam profiles assuming thin-walled open section. From comparing the warping calculated for two different beam profiles, the design method for the torsion beam in the view point of low stress is discussed. It is shown that the gusset used to reinforce the torsion beam can be optimized in accordance with warping shape. The method to fix the end point of the gusset is proposed to minimize the stress concentrated on the end point of the gusset produced during torsional moment. The result from finite element analysis shows the stress is minimized when the height of gusset end point is coincident with the point where warping of the beam is minimized.

Stress Analysis of Hollow Cylinder with Inner Cracks Subjected to Torsion Moment (내부크랙을 가지며 비틀림모멘트를 받는 중공축의 응력해석)

  • 이종선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.123-128
    • /
    • 1998
  • In fracture problems, stress intensity factors obtained theoretically and experimentally have been effectively utilized in the analytical evaluation of the cracks effect. The effect of surface crack of a cylindrical and a hollow cylindrical bar is investigated, as well as the effect of the thickness of a hollow cylindrical bar and inclined crack of a hollow cylinder subjected to torsion moment. In this study, stress intensity factor Km of mode III which expresses the stress state in the neighborhood of a crack tip is used. Stress analysis was conducted of the inside of a hollow cylinder in the axial direction of three dimensional crack tip subjected to torsion moment by combining the caustics method and the stress freezing method.

  • PDF

Stress Analysis of Hollow Cylinder with Inner Cracks Subjected to Torsion Moment (내부크랙을 가지며 비틀림모멘트를 받는 중공축의 응력해석)

  • Lee, Jong-Sun;Ha, Young-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.46-52
    • /
    • 1998
  • In fracture problems, stress intensity factors obtained theoretically and experimentally have been effectively utilized in the analytical evolution of the cracks effect. The effect of surface crack of a cylindrical and a hollow cylindrical bar is investigated, as well as the effect of the thickness of a hollow cylindrical bar and inclined crack of a hollow cylinder subjected to torsion moment. In this study, stress intensity factor Km of mode III which expresses the stress state in the neighborhood of a crack tip is used. stress analysis was conducted on the inside of hollow cylinder inthe axial direction of three dimensional crack tip subjected to torsion moment by combining the caustics method and the stress freezing method.

  • PDF

The questionable effectiveness of code accidental eccentricity

  • Ouazir, Abderrahmane;Hadjadj, Asma;Gasmi, Hatem;Karoui, Hatem
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • The need to account for accidental torsion in seismic design is no longer debatable, however, the seismic codes' requirement for accidental eccentricity has recently faced criticism. In order to get as close to real conditions as possible, this study investigated the impact of accidental torsion in symmetric RC multistory buildings caused by one of its many sources, the torsional earthquake component, and compared the results to those obtained by using the accidental eccentricity recommended by the codes (shifting the center of mass). To cover a wide range of frequencies and site conditions, two types of torsion seismic components were used: a recorded torsion accelerogram and five others generated using translation accelerograms. The main parameters that govern seismic responses, such as the number of stories (to account for the influence of all modes of vibration) and the frequency ratio (Ω) variation, were studied in terms of inter-story drift and displacement responses, as well as torsional moment. The results show that the eccentricity ratio of 5% required by most codes for accidental torsion should be reexamined and that it is prudent for computer analysis to use the static moment approach to implement the accidental eccentricity while waiting for new seismic code recommendations on the subject.