• 제목/요약/키워드: torsion code

Search Result 59, Processing Time 0.022 seconds

Role of accidental torsion in seismic reliability assessment for steel buildings

  • Chang, Heui-Yung;Lin, Chu-Chieh Jay;Lin, Ker-Chun;Chen, Jung-Yu
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.457-471
    • /
    • 2009
  • This study investigates the role of accidental torsion in seismic reliability assessment. The analyzed structures are regular 6-story and 20-story steel office buildings. The eccentricity in a floor plan was simulated by shifting the mass from the centroid by 5% of the dimension normal to earthquake shaking. The eccentricity along building heights was replicated by Latin hypercube sampling. The fragilities for immediate occupancy and life safety were evaluated using 0.7% and 2.5% inter-story drift limits. Two limit-state probabilities and the corresponding earthquake intensities were compared. The effect of ignoring accidental torsion and the use of code accidental eccentricity were also assessed. The results show that accidental torsion may influence differently the structural reliability and limit-state PGAs. In terms of structural reliability, significant differences in the probability of failure are obtained depending on whether accidental torsion is considered or not. In terms of limit-state PGAs, accidental torsion does not have a significant effect. In detail, ignoring accidental torsion leads to underestimates in low-rise buildings and at small drift limits. On the other hand, the use of code accidental eccentricity gives conservative estimates, especially in high-rise buildings at small drift limits.

The questionable effectiveness of code accidental eccentricity

  • Ouazir, Abderrahmane;Hadjadj, Asma;Gasmi, Hatem;Karoui, Hatem
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • The need to account for accidental torsion in seismic design is no longer debatable, however, the seismic codes' requirement for accidental eccentricity has recently faced criticism. In order to get as close to real conditions as possible, this study investigated the impact of accidental torsion in symmetric RC multistory buildings caused by one of its many sources, the torsional earthquake component, and compared the results to those obtained by using the accidental eccentricity recommended by the codes (shifting the center of mass). To cover a wide range of frequencies and site conditions, two types of torsion seismic components were used: a recorded torsion accelerogram and five others generated using translation accelerograms. The main parameters that govern seismic responses, such as the number of stories (to account for the influence of all modes of vibration) and the frequency ratio (Ω) variation, were studied in terms of inter-story drift and displacement responses, as well as torsional moment. The results show that the eccentricity ratio of 5% required by most codes for accidental torsion should be reexamined and that it is prudent for computer analysis to use the static moment approach to implement the accidental eccentricity while waiting for new seismic code recommendations on the subject.

Prediction on the Torsional Strength of Reinforced Concrete Beams Subjected to Pure Torsion by Truss Model (트러스 모델을 이용한 순수비틀림을 받는 철근콘크리트 보의 비틀림 강도 예측)

  • 박지선;김상우;이정윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1103-1108
    • /
    • 2001
  • ACI 318-99 predicts the torsional moment of reinforced concrete members by assuming that the angle of diagonal compressive concrete is equal to 45 degree. However, this angle depends on the difference of longitudinal and transverse steel ratios. This paper compares the torsional moments calculated by ACI 318-99 code and a truss model considering compatibility of strains. The comparison indicated that the torsion equation in ACI code underestimated the real torsional moment of reinforced concrete beam in which the ratio of longitudinal reinforcement was larger than that of transverse reinforcement.

  • PDF

Strength of prestressed concrete beams in torsion

  • Karayannis, Chris G.;Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.165-180
    • /
    • 2000
  • An analytical model with tension softening for the prediction of the capacity of prestressed concrete beams under pure torsion and under torsion combined with shear and flexure is introduced. The proposed approach employs bilinear stress-strain relationship with post cracking tension softening branch for the concrete in tension and special failure criteria for biaxial stress states. Further, for the solution of the governing equations a special numerical scheme is adopted which can be applied to elements with practically any cross-section since it utilizes a numerical mapping. The proposed method is mainly applied to plain prestressed concrete elements, but is also applicable to prestressed concrete beams with light transverse reinforcement. The aim of the present work is twofold; first, the validation of the approach by comparison between experimental results and analytical predictions and second, a parametrical study of the influence of concentric and eccentric prestressing on the torsional capacity of concrete elements and the interaction between torsion and shear for various levels of prestressing. The results of this investigation presented in the form of interaction curves, are compared to experimental results and code provisions.

Evaluation of Limit Loads for Circumferentially Cracked Pipes Under Combined Loadings (원주방향 표면 결함이 존재하는 배관에 가해지는 비틀림을 포함한 복합하중에 대한 한계하중식 제시)

  • Ryu, Ho-Wan;Han, Jae-Jun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.453-460
    • /
    • 2015
  • Since the Fukushima nuclear accident, several researchers are extensively studying the effect of torsion on the piping systems In nuclear power plants. Piping installations in power plants with a circumferential crack can be operated under combined loading conditions such as bending and torsion. ASME Code provides flaw evaluations for fully plastic fractures using limit load criteria for the structural integrity of the cracked pipes. According to the recent version of Code, combined loadings are provided only for the membrane and bending. Even though actual operating conditions have torsion loading, the methodology for evaluating torsion load is not established. This paper provides the results of limit load analyses by using finite element models for circumferentially cracked pipes under pure bending, pure torsion, and combined bending and torsion with tension. Theoretical limit load solutions based on net-section fully plastic criteria are suggested and verified with the results of finite element analyses.

Torsional Strength of RC Beams Designed according to ACI 318-02 Building Code (ACI 318-02 기준으로 설계된 철근콘크리트 보의 비틀림 강도 검토)

  • Lee, Jung-Yoon;Kim, Sang-Woo;Hyang, Hyun-Bok;Kim, Ji-Hyun;Park, Ji-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.255-258
    • /
    • 2005
  • The current ACI design code does not take into account the contribution of concrete for the torsional moment of reinforced concrete(RC) beams subjected to pure torsion. This code is not capable of evaluating the inter-effects between concrete and torsional reinforcement on the torsional resistance of the RC beams. In this study, 9 RC beams subjected to pure torsion were tested. The main parameter of the beams was the amount of torsional reinforcement and the angle of twist. Test results indicated that the current ACI code over-estimated the torsional strength of RC beams that had larger amount of torsional reinforcement.

  • PDF

Modal rigidity center: it's use for assessing elastic torsion in asymmetric buildings

  • Georgoussis, George K.
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.163-175
    • /
    • 2010
  • The vertical axis through the modal center of rigidity (m-CR) is used for interpreting the code torsional provisions in the design of eccentric multi-story building structures. The concept of m-CR has been demonstrated by the author in an earlier paper and the particular feature of this point is that when the vertical line of the centers of mass at the floor levels is passing through m-CR, minimum base torsion is developed. For this reason the aforesaid axis is used as reference axis for implementing the code provisions required by the equivalent static analysis. The study examines uniform mixed-bent-type multistory buildings with simple eccentricity, ranging from torsionally stiff to torsionally flexible systems. Using the results of a dynamic response spectrum analysis as a basis for comparisons, it is shown that the results of the code static design are on the safe side in torsionally stiff buildings, but unable to predict the required strength of bents on the stiff side of systems with a predominantly torsional response. Suggestions are made for improving the code provisions in such cases.

문형식 표지판 지지대의 모멘트 분포와 변형에 대한 해석 및 안정성 분석

  • Im, Hyeong-Tae;Kim, So-Hyeong;Park, Seong-Hyeon
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.251-256
    • /
    • 2015
  • In this paper, an systematic approach is presented, in which the bridge-type traffic sign structure is body out by CSDDA PrePost Processor. There is dead load and wind load that is working on the structure which will make force and moment. Analyzied the stress distribution of the standard form and by changing the shape, compared the safety in terms of deflection and stress (with the standard form) to know the effect of each component in the bridge-type traffic sign structure. The safety of deflection and stress is evaluated by maximum distance/100) and ASIC code respectively. The standard form of bridge-type traffic sign structure is established by two pairs of pillar and two pairs of floor beam. Replaced the links which is consist of flange and screws as the torsion spring and nm our analysis program. By adjusting variable of rigidity modulus of torsion spring, moment between column and beam is controled depending on value of rigidity modulus.

  • PDF

Strength Prediction of RC Beams Subjected to Pure Torsions Using 3-D Strut-Tie Models (3차원 스트럿-타이 모델을 이용한 순수 비틀림을 받는 보의 강도예측)

  • 박정웅;윤영묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.409-412
    • /
    • 2003
  • ACI design code is not capable of evaluating the inter-effects between concrete and torsional reinforcement on the torsional resistance of the reinforced concrete beams. In this study, the failure strengths of the ten reinforced concrete beams subjected to pure torsion were evaluated using 3-dimensional strut-tie models. The analysis results obtained from the present study were compared with those obtained from the ACI design code. The comparison showed that the accuracy and performance of the present method were better than the ACI design code. Thus, the method implementing a 3-dimensional strut-tie model can be possibly applied to the analysis and design of the reinforced concrete beams subjected to pure torsion as a rational design method.

  • PDF

Prediction of the Torsional Strength of Reinforced Concrete Beams Subjected to Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 비틀림 강도 예측)

  • 이정윤;박지선
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1010-1021
    • /
    • 2002
  • The current ACI design code does not take into account the contribution of concrete for the torsional moment of reinforced concrete(RC) beams subjected to pure torsion. This code is not capable of evaluating the inter-effects between concrete and torsional reinforcement on the torsional resistance of the RC beams. Some test results indicated that the current ACI code was not successful in predicting the observed torsional moment of the RC beams with reasonable accuracy. The research reported in this paper provides an evaluation equation to predict the torsional moment of the RC beams subjected to pure torsion. The proposed equation is derived from the equilibrium as well as compatibility equations of the truss model for the cracked RC beams. Comparisons between the observed and calculated torsional moments of the 66 tested beams, showed reasonable agreement.