• 제목/요약/키워드: torque-coefficient

검색결과 266건 처리시간 0.022초

가변속도-가변피치 풍력터빈의 공기역학적 토크의 비선형 특성에 관한 고찰 (An Investigation on Nonlinear Characteristics of Aerodynamic Torque for Variable-Speed Variable-Pitch Wind Turbine)

  • 임채욱
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.29-34
    • /
    • 2011
  • Aerodynamic torque of wind turbine is highly nonlinear due to the nonlinear interactions between wind and blade. The aerodynamic nonlinearity is represented by nonlinear power and torque coefficients which are functions of wind speed, rotational speed of rotor, and pitch angle of blade. It is essential from the viewpoint of understanding and analysis of dynamic characteristics for wind turbine to linearize the aerodynamic torque and define aerodynamic nonlinear parameters as derivatives of aerodynamic torque with respect to the three parameters. In this paper, a linearization method of the aerodynamic torque from power coefficient is presented through differentiating it by the three parameters. And steady-state values of three aerodynamic nonlinear parameters according to wind speed are obtained and their nonlinear characteristics are investigated.

동축 구 사이의 자성 유체의 Couette 유동에 관한 연구 (Experimental Study for Ferrofluid Couette Flow between Two Coaxial Spheres)

  • 구도연;하옥남;전운학
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.1-9
    • /
    • 1996
  • This study investigated torque characteristics for Couette flow experimentally under circumstaces that ferrofluids were between two coaxial spheres. Torque measurement was obtained for the situation where the inner sphere was rotating while the outer sphere was kept stationary. The magnetic field was imposed on the fluid, using a bar magnet which was inserted in the inner sphere. In the laminar flow region the torque increase when the magnetic field is applied and the critical Reynolds number is increased. However, in the transition regime, the effect of the magnetic field on the torque characteristics decrease as Reynolds number increases. The value of torque were the same as those of glycerine solution beyond the cirtical Reynolds number. We also made experimental equation which could obtain coefficient of torque within critical Reynolds number in terms of sphere spacing Reynolds number and magnetic properties of ferrofluid.

  • PDF

동심원 환내의 정상.비정상 회전 유동 (Steady and Unsteady Rotating Flows between Concentric Cylinders)

  • 심우건
    • 소음진동
    • /
    • 제7권4호
    • /
    • pp.613-620
    • /
    • 1997
  • Steady and unsteady flows between rotating cylinders are of interest on lubrication, convective heat transfer and flow-induced vibration in large rotating machinery. Steady rotating flow is generated by rotating cylinder with constant velocity while the unsteady rotating flow by oscillating cylinder with homogeneoysly oscillating velocity. An analytical method is developed based on the simple radial coordinate transformation for the steady and unsteady rotating flows in concentric annulus. The governing equations are simplified from Navier-Stokes equatins. Considering the skin friction based on the radial variation of circumferential flow velocity, the torques acting on the fixed and the rotating cylinder are evaluated in terms of added-inertia and added-damping torque coefficients. The coefficients are found to be influenced by the oscillatory Reynolds number and the radius ratio of two cylinders; however, the effect of the oscillatory Reynolds number on the coefficients is minor in case of relatively low radius ratio.

  • PDF

열간사상압연 통판안정성 개선을 위한 속도설정모델 개발 (Development of Rolling Speed Set-up Model for the Travelling Stability in Hot Strip Finishing Mill)

  • 문영훈;김영환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.47-56
    • /
    • 1999
  • New rolling speed prediction model has been developed for the precise presetting rolling speed of each finishing mill stand in the tandem hot strip mill. Those factors such as neutral point, work roll diameter, rolling torque, friction coefficient, bite angle and the thickness at each side of entry and deliver of the rolls were taken into account. To consider width effect on forward slip, calibration factors obtained from rolling torque has been added to new prediction model and refining method has also been developed to reduce the speed unbalance between adjacent stands. The application of the new model showed a good agreement in rolling speeds between the predictions and the actual measurements, and the standard deviation of prediction error has also been significantly reduced.

  • PDF

Numerical optimization of Wells turbine for wave energy extraction

  • Halder, Paresh;Rhee, Shin Hyung;Samad, Abdus
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.11-24
    • /
    • 2017
  • The present work focuses multi-objective optimization of blade sweep for a Wells turbine. The blade-sweep parameters at the mid and the tip sections are selected as design variables. The peak-torque coefficient and the corresponding efficiency are the objective functions, which are maximized. The numerical analysis has been carried out by solving 3D RANS equations based on k-w SST turbulence model. Nine design points are selected within a design space and the simulations are run. Based on the computational results, surrogate-based weighted average models are constructed and the population based multi-objective evolutionary algorithm gave Pareto optimal solutions. The peak-torque coefficient and the corresponding efficiency are enhanced, and the results are analysed using CFD simulations. Two extreme designs in the Pareto solutions show that the peak-torque-coefficient is increased by 28.28% and the corresponding efficiency is decreased by 13.5%. A detailed flow analysis shows the separation phenomena change the turbine performance.

블레이드 열의 배치에 따른 베인형 조류 수차의 성능 비교 (A Comparison of Performance of Six and Twelve-Blade Vane Tidal Turbines between Single and Double Blade-row Types)

  • 웬만훙;김준호;김부기;양창조
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.51-58
    • /
    • 2015
  • This paper presents a study on Vane Tidal Turbine (VTT) focusing on analysis of two types of blade arrangement originated from the previous studies where the original design was examined and performance-tested for different numbers of blades (six, eight and twelve). Compared to conventional tidal turbines, VTT has several special features and potential advantages which have been being thoroughly developed. The purpose of this study is to analyze VTT's capability of extracting and converting the hydrokinetic energy of tidal currents into electricity at given arrangement of blades (single and double rows, six and twelve blades) using CFD. From the calculation results, the six-blade single row turbine shows the best performance, in which the highest power and torque coefficients reach up to about 34 % and 36 %, respectively, at TSR=0.94. However, despite of lower power coefficient, by adding more blades, the torque's extraction of twelve-blade turbine, especially the double row type, is less fluctuate than that of the six-blade setups.

소화용 버터플라이 밸브 디스크의 토크특성에 관한 연구 (A Study on the Torque Characteristics of Butterfly Valve Disc in Fire Protection)

  • 이동명;박승옥
    • 한국화재소방학회논문지
    • /
    • 제16권2호
    • /
    • pp.33-37
    • /
    • 2002
  • 본 연구에서는 소화용수 제어에 사용되고 있는 버터플라이 밸브의 디스크에 대한 유체역학 토크특성을 연구하였다. 자유-유선 이론이 유체역학 토크특성을 예측하는데 응용되었다. 디스크의 토크특성은 토크 이론식에 밸브 디스크의 개도각과 주변속도가 보정되었고, 보정식이 추가되었다. 디스크의 토크특성은 허브의 두께와 직경 비에 대해 조사하였다. 예측결과는 버터플라이 밸브의 전형적인 특성을 보여줌으로서 성공적인 것으로 보여진다. 디스크 주변의 속도분포를 가시적으로 확인함으로서, 자유-유선이론이 디스크의 토크특성를 예측하는데 사용될 수 있음을 확인하였다.

다리우스 풍차의 회전각에 따른 순간 토오크 해석 (A Instantaneous Torque Analysis of the Darrieus Wind Turbine varying with the rotating Angle of blade)

  • 오철수;권순홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.659-661
    • /
    • 1992
  • This paper deals with aerodynamic problems of the rotating blade of Darrieus wind turbine and its instantaneous torque. The instantaneous torque varying with the rotating angle of blade was obtained through resultant wind velocity, angle of attack, lift and drag coefficient. These are obtained from a given wing section, size and wind velocity.

  • PDF

다판 클러치방식 차동제한장치 개발을 위한 설계인자 분석에 관한 연구 (A Study on the Analysis of Design Parameters for Development of LSD)

  • 신용호;이동원;신천세
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.15-21
    • /
    • 2010
  • A differential case equipped with LSD(limited slip differential) has several advantages over a normal type for rear wheel drive vehicles. Specially, the torque distribution can be done between left and right drive wheel in the state of limited slip differential. Also although LSD types are very various according to operating type, medium and torque distribution, a multi-clutch type is generally applied to rear wheel drive vehicles. So, this study presents the analysis of design parameters for development of a friction plate for multi-clutch type LSD using vehicle road test, the simulation of analytical model and the development of vehicle dynamics model by a benchmark product. According to this investigation, the design parameters which are pre-load of coil spring, friction plate and contact area quantity, friction coefficient and TBR(torque bias ratio) for a friction plate are derived from experiment and simulation and consequently, vehicle dynamics model has been constructed for the development of friction plate for multi-clutch type LSD.

4WD 차량의 후륜 구동력 제어를 위한 구동시 노면마찰계수 추정에 관한 연구 (A Study of Tire Road Friction Estimation for Controlling Rear Wheel Driving Force of 4WD Vehicle)

  • 박재영;심우진;허승진
    • 한국자동차공학회논문집
    • /
    • 제24권5호
    • /
    • pp.512-519
    • /
    • 2016
  • In this study, the tire road friction estimation(TRFE) algorithm for controlling the rear wheel driving force of a 4WD vehicle during acceleration is developed using a standard sensor in an ordinary 4WD passenger car and a speed sensor. The algorithm is constructed for the wheel shaft torque, longitudinal tire force, vertical tire force and maximum tire road friction estimation. The estimation results of shaft torque and tire force were validated using a torque sensor and wheel force transducer. In the algorithm, the current road friction is defined as the proportion calculated between longitudinal and vertical tire force. Slip slop methods using current road friction and slip ratio are applied to estimate the road friction coefficient. Based on this study's results, the traction performance, fuel consumption and drive shaft strength performance of a 4WD vehicle are improved by applying the tire road friction estimation algorithm.