• 제목/요약/키워드: torque-coefficient

검색결과 266건 처리시간 0.029초

실내환경과 건설현장 온도변수를 고려한 고력볼트 체결력 예측 (Estimation on Clamping Force of High Strength Bolts Considering Temperature Variable of Both Site conditions and Indoor Environments)

  • 나환선;이현주
    • 복합신소재구조학회 논문집
    • /
    • 제6권3호
    • /
    • pp.32-40
    • /
    • 2015
  • The torque shear high strength bolt is clamped normally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the required tension, as it considerably fluctuates due to torque coefficient dependent on lubricant affected temperature. In this study, the clamping tests of torque shear bolts were conducted independently at indoor conditions and at construction site conditions. During last six years, temperature of candidated site conditions was recorded from $-11^{\circ}C$ to $34^{\circ}C$. The indoor temperature condition was ranged from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. As for site conditions, the clamping force was reached in the range from 159 to 210 kN and the torque value was from 405 to $556 N{\cdot}m$. The range of torque coefficient at indoor conditions was analyzed from 0.126 to 0.158 while tensions were indicated from 179 to 192 kN. The torque coefficient at site conditions was ranged from 0.118 to 0.152. Based on this test, the variable trends of torque coefficient, tension subjected temperature can be taken by statistic regressive analysis. The variable of torque coefficient under the indoor conditions is $0.13%/^{\circ}C$ while it reaches $2.73%/^{\circ}C$ at actual site conditions. When the indoor trends and site conditions is combined, the modified variable of torque coefficient can be expected as $0.2%/^{\circ}C$. and the modified variable of tension can be determined as $0.18%/^{\circ}C$.

Estimation on clamping load of high strength bolts considering various environment conditions

  • Nah, Hwan-Seon;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • 제24권4호
    • /
    • pp.399-408
    • /
    • 2017
  • Of high strength bolts, the torque shear type bolt is known to be clamped normally when pin-tails are broken. Sometimes the clamping loads on slip critical connections considerably fluctuate from the required tension due to variation of torque coefficient. This is why the viscosity of lubricant affects the torque coefficient by temperature. In this study, the clamping tests of high strength bolts were performed independently at laboratory conditions and at outdoor environment. The temperatures of outdoor environment candidates were ranged from $-11^{\circ}C$ to $34^{\circ}C$ for six years. The temperature at laboratory condition was composed from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. At outdoor environment conditions, the clamping load of high strength bolt was varied from 159 to 210 kN and the torque value was varied from 405 to 556 Nm. The torque coefficients at outdoor environment were calculated from 0.126 to 0.158 when tensions were measured from 179 to 192 kN by using tension meter. The torque coefficients at outdoor environment conditions were analyzed as the range from 0.118 to 0.152. From these tests, the diverse equations of torque coefficient, tension dependent to temperature can be acquired by statistic regressive analysis. The variable of torque coefficient at laboratory conditions is 0.13% per each $1^{\circ}C$ when it reaches 2.73% per each $1^{\circ}C$ at outdoor environment conditions. When the results at laboratory conditions and at outdoor environment were combined to get the revised equations, the change in torque coefficient was modified as 0.2% per each $1^{\circ}C$ and the increment of tension was adjusted as 1.89 % per each $1^{\circ}C$.

토크전단형 고력볼트의 토크계수 변동에 따른 체결축력 확보방안에 관한 연구 (A Study on the Secure Plan of Clamping Force according to the Variation of Torque-Coefficient in Torque-Shear High Strength Bolts)

  • 이현주;나환선;최성모
    • 복합신소재구조학회 논문집
    • /
    • 제5권3호
    • /
    • pp.8-16
    • /
    • 2014
  • Torque control method and turn of nut method are specified as clamping method of high strength bolts in the steel construction specifications. Quality control of torque coefficient is essential activity because torque control method, which is presently adopted as clamping method in domestic construction sites, is affected by variation of torque coefficient. The clamping of torque shear bolt is based on KS B 2819. It was misunderstood that the tension force of the TS bolt was induced generally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the intended tension, as it considerably varies due to torque coefficient dependent on the environmental factors and temperature variables despite the break of the pin tail.This study was focused to evaluate the effect of environmental factors and errors of installing bolts during tightening high strength bolts. The environmental parameters were composed of 'wet' condition, 'rust' condition, 'only exposure to air' condition. And the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter.

수직축 풍력발전용 날개의 기동력특성 (Self-Starting Characteristics of Blades for Vertical Axis Wind turbine)

  • 김성훈;김영익;이준민
    • 에너지공학
    • /
    • 제29권1호
    • /
    • pp.34-43
    • /
    • 2020
  • 풍력발전기 로터의 저속운전 가능성에 대해 기동토크를 평가하고자 하였다. 본 연구에서 살펴본 저속시동 가능성의 날개는 초임계에어포일을 보완하여 AMI계열(AMI903 및 AMI904)의 날개를 제안하여 공력성능을 유지하며 제작상 및 유지보수의 어려움을 제거하였다. 따라서 본 연구는 FLUENT를 이용하여 난류유동 해석을 통해 제안된 날개의 받음각(-180°~+180°)에 대한 항력계수와 양력계수를 제시하였으며, 이 값들로부터 정지하고 있는 날개의 회전 위치에 따른 접선방향의 토크계수를 정의하여 제시하였다. 기동력의 크기와 방향을 결정할 토크계수는 대부분 양의 값(반시계방향)으로 나타났으며 특별히 받음각이 0°에서 180° 및 -90°에서 -180°에서 양의 값이며 0°에서 -90°에서 매우 작거나 음의 값을 나타냈다. 한편 기동토크는 두께가 얇은 AMI903보다 두꺼운 AMI904에서 더 큰 것으로 나타났다.

공작기계 주축 유도전동기의 속도 센서리스 토크 감시 (Speed Sensorless Torque Monitoring Of Induction Spindle Motor On Machine Tool)

  • 홍익준;권원태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.18-23
    • /
    • 2002
  • In this paper, The torque of CNC spindle motor during machining is estimated without speed measuring sensor. The CNC spindle system is divided into two parts, the induction spindle motor part and mechanical part. In mechanical part the variation of the frictional force due to the increment of the cutting torque and the effect of damping coefficient is investigated. Damping coefficient is found to be a function of spindle speed and not influenced by the weight of the load, while frictional force is a function of both the cutting torque and spindle speed. Experimental formulars are drawn for damping coefficient as a function of spindle speed and frictional force as a function of both cutting torque and spindle speed respectively, to estimate the cutting torque accurately. Graphical programming is used to implement the suggested algorithm, to monitor the torque of an induction motor in real time. Torque of the spindle induction motor is well monitored with 3% error range under various cutting conditions.

  • PDF

토크컨버터 바이패스 클러치의 마찰계수 적응 슬립제어 (Friction-Coefficient-Adaptive Slip Control of Torque Converter Bypass Clutch)

  • 한진오;이교일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.739-744
    • /
    • 2004
  • This paper presents an adaptive approach to control the amount of slip of the torque converter bypass clutch using its estimated friction coefficient. The proposed approach can be readily implemented using the inexpensive speed sensors currently installed in an automobile. A measurement feedback control law to drive the slip error to zero together with an adaptation law to identify the unknown friction coefficient is developed using the Lyapunov control design method. The robustness of the control and adaptation laws to parametric and/or torque uncertainties as well as the convergence of the friction coefficient are investigated. Simulation results verify the viability of the proposed control algorithm in real-world vehicle control applications.

  • PDF

고력볼트 시공환경에 따른 토크계수와 체결축력에 관한 실험적 연구 (Experimental Study on the Torque Coefficient and Clamping Force of High Strength Bolts Subjected to Environmental Parameters)

  • 이현주;나환선;김강석;김진호;김진만
    • 한국강구조학회 논문집
    • /
    • 제20권1호
    • /
    • pp.43-53
    • /
    • 2008
  • 현재 국내에서 현장 체결공법으로 채용하고 있는 토크관리법은 토크계수를 근거로 해서 간접적으로 도입축력을 제어하는 방법이기 때문에 현장에서의 토크계수 관리가 상당히 중요하다. 따라서 본 연구에서는 현장 시공시 볼트보관방법 및 현장관리에서 일반적으로 발생할 수 있는 주요 환경 요인 중 수분 침투, 녹 발생, 외기노출, 와셔의 오용 등 다양한 실험변수로 계획하여 토크계수의 변화에 따른 도입축력의 차이를 확인하기 위하여 실험을 수행했다. 실험에 사용된 볼트는 육각 고력볼트, TS 고력볼트, 아연피막처리 육각 고력볼트, ASTM A490 고력볼트로서 4종류로 구분하여 수행되었고, 각 볼트별로 시공환경에 따른 체결특성을 비교 분석하였다.

CNC 선반가공 중 속도 센서리스 토크 감시 (Speed Sensorless Torque Monitoring During Machining on CNC Lathe)

  • 홍익준;권원태
    • 대한기계학회논문집A
    • /
    • 제28권3호
    • /
    • pp.222-229
    • /
    • 2004
  • In this paper, the torque of CNC spindle motor during machining is estimated without speed measuring sensor. The CNC spindle system is divided into two parts, the induction spindle motor part and mechanical part. In mechanical part, the variation of the frictional force due to the increment of the cutting torque and the effect of damping coefficient is investigated. Damping coefficient is found to be a function of spindle speed and not influenced by the weight of the load, while frictional force is a function of both the cutting torque and spindle speed. Experimental equations are drawn for damping coefficient and Coulomb friction as a function of spindle speed. Incremental frictional torque Is also obtained as a function of both cutting torque and spindle speed. Graphical programming is used to implement the suggested algorithm to monitor the torque of an induction motor in real time. Torque of the spindle induction motor is estimated well in about average 3% error range under various cutting conditions.

유전 알고리즘과 인공 신경망 기법을 이용한 무인항공기 로터 블레이드 공력 최적설계 (AERODYNAMIC DESIGN OPTIMIZATION OF UAV ROTOR BLADES USING A GENETIC ALGORITHM AND ARTIFICIAL NEURAL NETWORKS)

  • 이학민;유재관;안상준;권오준
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.29-36
    • /
    • 2014
  • In the present study, an aerodynamic design optimization of UAV rotor blades was conducted using a genetic algorithm(GA) coupled with computational fluid dynamics(CFD). To reduce computational cost in making databases, a function approximation was applied using artificial neural networks(ANN) based on a radial basis function network. Three dimensional Reynolds-Averaged Navier-Stokes(RANS) solver was used to solve the flow around UAV rotor blades. Design directions were specified to maximize thrust coefficient maintaining torque coefficient and minimize torque coefficient maintaining thrust coefficient. Design variables such as twist angle, thickness and chord length were adopted to perform a planform optimization. As a result of an optimization regarding to maximizing thrust coefficient, thrust coefficient was increased about 4.5% than base configuration. In case of an optimization minimizing torque coefficient, torque coefficient was decreased about 7.4% comparing with base configuration.

수계소화시스템 버터플라이 밸브의 성능해석에 관한 연구 (A Study on the Performance Analysis of Butterfly Valve in Water Fire Extinguishing System)

  • 이동명
    • 한국화재소방학회논문지
    • /
    • 제21권3호
    • /
    • pp.91-96
    • /
    • 2007
  • 수계소화시스템 버터플라이 밸브의 성능해석에 대한 연구를 수행하였다. 버터플라이 밸브의 성능해석으로는 토크특성, 압력손실과 캐비테이션을 고찰하였다. 밸브의 토크특성은 토크 이론식에 밸브 디스크의 개도각이 보정되었고, 보정식이 추가되었다. 밸브의 열림각에 대한 압력손실계수는 Carnot 방정식을 응용하여 수식화하였다. 버터플라이 밸브의 토크특성, 압력손실과 캐비테이션은 디스크의 두께와 직경 비에 대해 해석하였다. 캐비테이션은 밸브의 압력손실계수로부터 해석하였다. 압력손실과 캐비테이션 해석은 밸브의 열림각에 대한 두께 비의 변화에 따라 수행하였다. 이들 해석 데이터는 버터플라이 밸브를 개발하는데 필요한 엔지니어링 데이터로 활용하고자 한다.