• Title/Summary/Keyword: torque variation

Search Result 523, Processing Time 0.035 seconds

Design and Analysis of Gerotor for Hydraulic Motors (유압모터에 사용되는 제로터의 설계 및 해석)

  • 이성철;이성남
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.63-70
    • /
    • 1995
  • The analytical design method of gerotor profile, based on an envelope of a family of curves, is proposed. Analysis to calculate the flow rate and the torque capacity of a gerotor set are presented. The influence of the circular tooth radius and the amount of eccentricity on the configuration of a gerotor has been explored in this paper. The variation of the inlet volume and the fluctuation of the generated torque are also analyzed.

A Study On Maximum Torque Of Interior Permanent Magnet Synchronous Motors Considering Temperature Variation (영구자석 동기전동기의 온도변화를 고려한 최대토오크에 관한 연구)

  • Hyun, Dong-Suk;Sim, Joon-Suk;Baek, Kwang-Sun;Kim, Nam-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.600-603
    • /
    • 1989
  • In this paper, maximum torque per current ratio of the interior permanent magnet synchronous machines including compensation of Ne-Fe-B magnets in negative temperature sensitivity is described. This compensation can be achieved by measuring of motor temperature only.

  • PDF

Tough Disturbance Cancellation State Observer of Induction Motor for Disturbance Vibration (외란 변동에 강인한 유도전동기의 외란 상쇄 관측기)

  • Song H.B.;Seo Y.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.816-819
    • /
    • 2003
  • This paper described a robust control of an induction motor using a disturbance cancellation observer of a feedforward control with Matlab simulink. The speed response of conventional PI controller characteristics is affected by variation of load torque disturbance. In this system, the speed control characteristics using a feedforward control toughen about a load torque disturbance.

  • PDF

Design of a Speed Controller for the Synchronous Motor in Electric Vehicle (전기자동차용 동기기의 속도제어기 설계)

  • Hyun, Keun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.239-240
    • /
    • 2007
  • In this paper, a robust adaptive backstepping controller will be proposed for the speed control of permanent magnet synchronous motors in using electrical vehicles. Stator resistance, damping coefficient, load torque are considered as uncertainties and noise generated at applying load torque to motor is also considered. It shows that the backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation results are provided to demonstrate the effectiveness of the Proposed controller.

  • PDF

Experimental Study on the Torque Coefficient and Clamping Force of High Strength Bolts Subjected to Environmental Parameters (고력볼트 시공환경에 따른 토크계수와 체결축력에 관한 실험적 연구)

  • Lee, Hyeon Ju;Nah, Hwan Seon;Kim, Kang Seok;Kim, Jin Ho;Kim, Jin Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • Because the torque control method, which is also caled the clamping method in domestic construction sites, is affected by a variation of the torque coefficient, quality control of the torque coefficient is essential. This study was focused to evaluate the effects of several environmental factors and errors when installing bolts while tightening high-strength bolts. Conditioning environmental parameters include wet, rusty and exposure-to-air-only conditions. In addition, because of errors in workability such as instalation of two washers, upset washers are selected. During the tests, torque, torque coefficient, tension and angle of nut rotation were obtained using a bolt testing machine. Test specimens of four types of bolts (High-Strength Hexagon bolt on KS B 1010, Torque Shear Bolt on KS B 2819, High-Strength Hexagon bolt coated with zinc, and ASTM 490 bolt) were recomended. Based on test results, the tightening characteristics subjected to environmental parameters were investigated and compared with the results in normal condition.

Study on Performance of Adaptive Maximum Torque Per Amp Control in Induction Motor Drives at Light Load Operation

  • Kwon, Chun-Ki;Kong, Yong-Hae;Kim, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.249-255
    • /
    • 2017
  • Efficient operation of induction motor at light loads has been getting wide attention recently because the operating of induction motor at light loads occupies big portion of its operating regions in many applications such as environment friendly vehicle. As one of approaches to improve efficiency, Adaptive Maximum Torque Per Amp (Adaptive MTPA) control for induction motor drives has been proposed to achieve a desired torque with the minimum possible stator current. However, the Adaptive MTPA control was validated only at heavy load where, in general, control scheme tends to perform better than at light loads since the error in measurement of sensors is lower and signal to noise is better. Thus, although the performance of a control scheme is good at rated operating point, its performance at light load is somewhat in doubt in practice. This has led to considerable interest in efficiency of Adaptive MTPA control at light loads. This work experimentally demonstrates performance of Adaptive MTPA control at light loads regardless of rotor resistance variation, thus showing its good performance over all operating conditions.

Influence Analysis of Power Grid Harmonics on Synchronous Hydro Generators

  • Qiu, Hongbo;Fan, Xiaobin;Feng, Jianqin;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1577-1584
    • /
    • 2018
  • The content of harmonic current increases with an increase in the number of power electronic devices in power grid. When a generator is directly connected to the power grid through a step-up transformer, the influence of the harmonic currents on the generator is inevitable. To study the influences of harmonics on generators, a 24-MW bulb tubular turbine generator is taken as an example in this paper. A 2-D transient electromagnetic field model is established. Through a comparative analysis of the data of experiments and simulations, the correctness of the model is verified. The values of the air gap magnetic density, torque and losses of the generator under various conditions are calculated using the finite element method. Taking the rated condition as a reference, the influence of the harmonic currents on the magnetic flux density is analyzed. It is confirmed that the time harmonic is a key factor affecting the generator performance. At the same time, the effects of harmonic currents on the torque ripple, average torque and eddy current loss of the generator are studied, and the mechanism of the variation of the eddy current loss is also discussed.

The Torque Characteristics Analysis of the Single-Phase Switched Reluctance Motor According to the Starting Method (기동 방법에 따른 단상 SRM의 토크 특성 해석)

  • Kim, Jun-Ho;Kim, IL-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.40-46
    • /
    • 2012
  • The single-phase switched reluctance motor(SRM) has only one inductance variation and the positive torque is generated in the restricted section. So, it cannot be started by itself. To solve this problem, many researchers have addressed the several starting method for the single-phase SRM. This paper is focused on the torque characteristics of the single-phase SRM according to starting method. The four major starting method - permanent magnet, saturable stator pole, to grade the rotor, stepped rotor pole - is selected to analyze the torque characteristics. The analysis model of each starting method is designed to changed the pole shape or inserting other material in the basic model. The torque characteristics of each analysis model is obtained by using FEM analysis. The FEM analysis is performed at incremental rotor positions over half inductance cycle in any one pole with 250AT, 500AT, 750AT. The distortion factor of each analysis model is analyzed through the FFT to compare the distortion between basic model and four analysis model.